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Supervisor’s Foreword

This thesis reports experimental studies of two of the most important families of
materials in condensed matter physics today: iron-pnictides and cuprate super-
conductors. The main experimental technique used was the de Haas-van Alphen
(dHvA) effect. The work was very demanding, requiring painstaking work on very
small, high purity single crystals both in our home laboratory and during several
months spent in international high magnetic field facilities (Toulouse, Tallahassee,
Dresden). The work has been published in several high-profile papers which are
being highly cited. Results in the iron-pnictide materials revealed the details of their
Fermi surfaces, the quasiparticle mass renormalisations and how these are related to
the occurrence and nature of superconductivity. In the isovalently substituted series
BaFe2(As1−xPx)2, a large mass enhancement close its antiferromagnetic quantum
critical point was measured but this was found to affect the upper and lower critical
fields in an unexpected way. These results will significantly redefine our under-
standing of superconductivity close to a quantum critical point. Finally, a prelim-
inary study of the quantum oscillations in the cuprate YBa2Cu4O8 under high
pressure was made. This work has subsequently been extended revealing an
unexpected inverse relationship between effective mass and Tc.

Bristol, England, UK Prof. Antony Carrington
October 2016
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Abstract

This thesis presents the results obtained from de Haas-van Alphen experiments in
iron-based superconductors. Measurements of the quasiparticle mass in the quan-
tum critical system BaFe2(As1−xPx)2 are presented, which show strong enhance-
ment towards the critical composition xc = 0.3. This is found to be in good
agreement with the prediction of a diverging behaviour of the effective mass close
to a quantum critical point. Further results obtained on the lower and upper
superconducting critical field of this system will be presented, which are found to
contradict the expectations from Ginzburg–Landau theory based on results of the
quasiparticle mass and London penetration depth. However, we can reconcile the
different experimental findings on superconducting and normal state properties, in
this quantum critical system, by considering a significant contribution from
Abrikosov vortex core states. The importance of understanding the normal state
electronic structure and interactions is shown to be essential for an understanding
of the superconducting ground state of a quantum critical system.

Further we will show a detailed de Haas-van Alphen study of the 111-type
iron-based superconductor LiFeP and its isovalent partner LiFeAs. To understand
the formation of nodes on the superconducting gap structure in systems with little
change in their Fermi surface topology, is essential for the formulation of a
microscopic theory of the pairing mechanism in pnictide-superconductors. While
we find both systems to be close to the geometric nesting condition, we are able to
point to different possible scenarios of the origin of nodes based on quasiparticle
mass enhancement.

Extending the study of quasiparticle mass and its relation to the superconducting
properties to the stoichiometric high-temperature cuprate superconductor
YBa2Cu4O8, we aim to study the Fermi surface evolution under hydrostatic pres-
sure. As the system has a very stable oxygen stoichiometry which does not allow it
to be doped by oxygen ordering, we use hydrostatic pressure to tune the system
unexpectedly leading to an increase in the superconducting critical temperature with
almost no change to the quasiparticle mass.
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Chapter 1
Introduction

1.1 Low Temperature Physics

In many research facilities and universities around the world you will find a group
that is referred to as quantum matter or strongly correlated electron group. While
those terms represent the interesting topics to study it is not so long ago that many of
these groups were referred to as low temperature physics. Here the main technique
used in the laboratory and in experiments present in this thesis is put into focus.
This field experienced a boost when Kamerlingh Ones more than a hundred years
first liquefied Helium. He was driven by the question: what happens to the electrical
resistivity of a metal when cooled close to zero temperature. Doing so he discovered
superconductivity in Mercury.

While superconductivity is maybe the most prominent low-temperature-effect
there are a number of effects that require to cool samples to a few Kelvin above
absolute zero. In Chap.2 we will discuss the de Haas-van Alphen effect. This relies
on the quantization of electron-states under the application of a magnetic field. At
elevated temperatures these states become smeared out by the thermal energy and
so unobservable. For correlated electron research low-temperatures are therefore an
important tool that reveals new ground states but also enables detailed measurements
on electronic correlations. A detailed summary of how to achieve low-temperatures
and perform measurements under these conditions is given in Ref. [1].

Another phenomena that has been of great interest to the community are quantum
critical points in a number of materials. These points represent the zero temperature
endpoint of a continuous phase transition. At this point the only available excita-
tions are those of the zero-point fluctuations arising from Heisenbergs uncertainty
principle. The observation of such critical endpoint are not just limited by the fact
that the third law of thermodynamics forbids to reach zero temperature, but also
by a superconducting phase that is often found to cover these endpoints in organic,
heavy fermion and iron-based superconductors. However the existence of a quan-
tum critical point can influence the normal state of the material study even at finite

© Springer International Publishing AG 2017
C.M. Putzke, Fermi Surface and Quantum Critical Phenomena
in High-Temperature Superconductors, Springer Theses,
DOI 10.1007/978-3-319-48646-8_1
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2 1 Introduction

temperature and can lead to unconventional superconductivity as we will discuss in
detailed in the context of BaFe2(As1−xPx )2.

Beyond the application of low temperatures I will utilise high magnetic fields and
high pressure this thesis. Especially the application of highmagnetic fields is essential
to study the normal state of high temperature superconductors at low temperatures.

Most fundamental measurements at low temperatures involve determining the
specific heat, resistivity and magnetisation of single crystals. In this thesis I will
introduce some techniques often not or only briefly covered in undergraduate lecture
courses. The main tool in studying the bulk Fermi surface topology are quantum
oscillations. Those can be observed in a variety of properties such as the specific
heat, magnetisation, resistance and other probes that are sensitive to the density of
states at the Fermi level. An introduction to the theoretical background will be given
in Chap.2 and the analysis discussed in the experimental chapters.

The other technique introduced is the use of Hall-arrays to determine the lower
superconducting critical field. While this is a fundamental parameter of any type-II
superconductor that limits the Meissner-state it turns out to be one of the hardest to
determine experimentally. Why this is and how we can still obtain a measure of the
lower critical field I will discuss using measurements on BaFe2(As1−xPx )2 in a large
range of phosphorous concentration.

1.2 Iron Based Superconductors

The discovery of superconductivity in LaFeAsO in 2008 with a critical temperature
of 26K byHosono and co-workers [2] marked the birth of a field in condensedmatter
physics, soon to be known as iron-pnictides. Within two months of their discovery
the superconducting critical temperature had been pushed to 55K [3] by replacing
lanthanumwith samarium in this system.While this is the highest reported Tc for bulk
superconductivity in this material class still today, the fast approach of the critical
temperature to the boiling point of liquid nitrogen created much interest in the field
of high-temperature superconductivity.

Numerous materials containing an iron-pnitogen layer have been found since,
including large amounts of possible ways to tune the typically anti-ferromagnetic
parent compounds to become superconducting. Today we divide these materials
in families based on their stoichiometry, 1111, 122, 111 and 11-type. In Fig. 1.1 the
crystal structures are shown for themost prominent members of the relevant families.
The substitution of selenium for arsenic also produces a superconducting ground state
in materials like FeSe [4], thus there is a second family known as iron-chalcogenides,
which share their essential physics with the iron-pnictides. Both families are known
collectively as iron-pnictides.

The close proximity of superconductivity to an anti-ferromagnetic ground state is
something the pnictides share with cuprates. However unlike the cuprates the iron-
pnictides are multi band systems like the well studied phonon-mediated supercon-
ductor MgB2. The research conducted in this thesis is concerned with two different

http://dx.doi.org/10.1007/978-3-319-48646-8_2


1.2 Iron Based Superconductors 3

Fig. 1.1 The crystal structure of the main families of iron-based superconductors are shown. The
conventional unit cell is shown as dashed line. The iron pnictogen layer is highlighted. After
Ref. [5]

but related aspects of this material class. Experiments to determine the Fermi surface
of LiFeAs and LiFeP were performed to gain insight in the origin of the nodal ver-
sus nodeless superconducting gap structures. Furthermore experiments on the band
structure and especially the quasi particle mass in BaFe2(As1−xPx )2 were motivated
by the possible enhancement of superconductivity due to amagnetic quantum critical
point.

1.2.1 Crystal Structure and Band Structure

The common element of iron-based superconductors is the iron-pnictogen layer.
Unlike the copper-oxide-layer in cuprates, which forms an almost two-dimensional
plane, here the arsenic atoms take alternating positions above and below the iron-
layer.Whilemost systems crystallise in the primitive tetragonal space-groupP4/nmm
the 122-family is special as it has a body-centred tetragonal space-group I4/mmm.
The groups specific crystal structures are indicated in Fig. 1.1. While the 11-type
compounds only contain the iron-chalcogenide layer, the 111-type show similar
lattice parameters but have an additional element, lithium in the case of LiFeP, in
their unit cell. The 122-type family in contrast has a twice as long c-axis parameter
and contains two iron-pnictogen layers per conventional unit cell. Details on the
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hpn

αpn

(a) (b)

(c) (d)

Γ

1Fe

2Fe

1Fe

2Fe
M

Fig. 1.2 Schematic representation of the origin of one and two-iron unit cell. Starting by the crystal
structure of BaFe2P2 (a) the important parameter for the iron-pnictogen plane, the pnictogen height
h pn and pnictogen-bond-angle αpn , are indicated in (b). In the top view of the pnictogen-layer (c)
the one and two-iron unit cells are inticated. Those lead to the un-folded (solid lines) and folded
(dashed lines) Brillouine zone in (d)

crystals structures of the 122-family can be found in Sect. 4.1.1 in the context of
BaFe2(As1−xPx )2 and for the 111-type in Sect. 5.1.1 where we discuss LiFeAs and
LiFeP.

The most important structural feature that we want to discuss here in more detail
is the alternating position of the pnictogen atom above and below the iron plane. In
theoretical work it was shown that the precise form of iron-pnictogen layer, char-
acterised by the pnictogen-height h pn or the pnictogen-iron-pinctogen bond angle
αpn shown in Fig. 1.2b, plays a crucial role for the properties of the system [6–8].
We will give a detailed discussion of this effect in the context of quasi particle mass
enhancement in BaFe2(As1−xPx )2 in Sect. 4.1. Further the importance of changes in
the band structure of the pnictides caused by changes in the pnictogen height and
its influence on the gap structure will be cover in Sect. 5.1.3 in the context of the
111-type LiFeP.

Here we focus on the possibly most confusing result of the alternating pnictogen
position. This being the different unit cells found in literature. In the crystallographic
unit cell as shown in Fig. 1.2a we find two iron atoms per layer inside the unit cell.
This is the unit cell that is found in x-ray diffraction experiments. It is caused by
the periodicity of the arsenic atoms. In literature this unit cell is referred to as two-
iron (2Fe) unit cell. However the band structure of the pnictides, close to the Fermi
level, is made up of all five 3d-iron-orbitals as we will discuss in a moment. For two
iron atoms we would hence need to construct a 10-orbital model to best describe
the electronic properties of the system. In order to simplify this, theoretical work is
sometimes carried out in a unit cell only containing one iron atom. The periodicity
of iron is used in this case as shown in Fig. 1.2c (1Fe). The unit cell containing two
iron atoms is

√
2a × √

2a larger and its Brillouin zone (BZ) according smaller by
the same factor.

http://dx.doi.org/10.1007/978-3-319-48646-8_4
http://dx.doi.org/10.1007/978-3-319-48646-8_5
http://dx.doi.org/10.1007/978-3-319-48646-8_4
http://dx.doi.org/10.1007/978-3-319-48646-8_5
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Before we continue following this path we will have a look at the band structure
that is obtained in local density approximation calculations using the 1Fe BZ. The
typical Fermi surface found among undoped iron-pnictides holds two hole pockets at
the�-point of theBZ and one electron pocket centred at (π, 0) and (0,π) respectively
[9]. In some systems, depending on the pnictogen height, a third hole pocket can
appear at the corner of the BZ [7]. Based on DFT calculations we find that the density
of states (DOS) at the Fermi level is dominated by iron-3d-orbitals [10]. By further
splitting this result in the dxz,yz, dx2−y2 , dxy and dz2 orbital-character component it
is shown that all these orbitals hold significant weight at the Fermi level, making
the iron-pnictides a multiorbital system. Hence a model taking all five orbitals into
account is necessary to completely describe the system as mentioned before.

In order to obtain the band structure that we would expect to find in experiments
we need to transfer the 1Fe calculation into the 2Fe BZ. This is done by folding.
The new BZ is shown as dashed lines in Fig. 1.2d. The folded new parts of the
Fermi surface are also shown as dashed lines. We see that while the possible third
hole pocket is folded to the center of the BZ the electron pockets overlap causing
a degeneracy. The degeneracy is lifted by relativistic effects, spin-orbit coupling,
leading to an inner and outer electron pocket at the corners of the 2Fe BZ. Due to
this folding - unfolding - process between the band structures, the one and two iron
BZ are also often referred to unfolded and folded BZ. A further difference is that the
1Fe and 2Fe BZ are rotated by an angle of 45 ◦. This leads to changes in the orbital
character when comparing calculations done in the different unit cells. For example
corresponds the dx2−y2 orbital character in the 1Fe BZ to the dxy orbital character in
the 2Fe BZ and vice versa.

While in the cuprate-superconductors it took almost 20years from their discovery
to the first observation of quantum oscillations, high quality single crystals were
available in the field of iron-pnictides less than a year after their discovery. A variety
of experiments measuring the de Haas-van Alphen effect [11–13] showed that the
bulk Fermi surface in iron-base superconductors was in good agreement with band
structure calculations. At this point we will not extend the discussion into further
detail, but will pick up on the relevant details of the band structure and their origins
from the crystal structure in Sect. 4.1.2 for 122-type and in Sect. 5.1.2 for 111-type
materials.

1.2.2 Phase Diagram

After these general remarks on the crystal structure and resulting band structure we
now turn to the low temperature ground states of thematerials. In their stoichiometric
form only a few crystals show a superconducting ground state. One of those systems
is LiFeAs with Tc = 18K and its isovalent counterpart LiFeP with Tc = 5K,
which we will describe in detail in Chap.5. We typically refer to the arsenic end
member as the parent compound of any given system. Those typically show an anti-
ferromagnetic ground state that is accompanied by an orthorhombic distortion of

http://dx.doi.org/10.1007/978-3-319-48646-8_4
http://dx.doi.org/10.1007/978-3-319-48646-8_5
http://dx.doi.org/10.1007/978-3-319-48646-8_5
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(a) (b)

Fig. 1.3 Phase diagram of LaFeAsO1−xFx (a) and BaFe2As2 for substitution with potassium,
cobalt and phosphorous (b). After Ref. [14, 15]

the lattice. In Fig. 1.3 this is shown for two prominent examples of the pnictides.
The phase diagram of LaFeAsO doped with fluorine is shown in Fig. 1.3a. The
orthorhombic andmagnetic phase-transitions are clearly separated in temperature. In
the 122-type materials this is not the case in the parent compound. Figure1.3b shows
the phase diagram of BaFe2As2 for three different chemical substitutions [14]. The
chemical substitution has been normalized such that the anti-ferromagnetic (AFM)
transitions overlap.

Upon chemical substitution we find first a similar result in both 1111 and 122-
systems as the structural and magnetic transitions become suppressed. In the case
of LaFeAsO1−xFx an abrupt change to the superconducting state is found. When
substituting BaFe2As2 this transition happens more smoothly. We see that while in
thepotassiumandphosphorous substituted systembothAFMand structural transition
are suppressed equally, in the cobalt doped system the two transitions can eventually
clearly be separated showing the structural transition to set in at higher temperatures
like in the 1111-type parent compound. Also by extrapolating the AFM transition to
zero temperature the substitution value we find is typically close or at the point where
we observe the highest superconducting critical temperatures. The superconducting
phase sets in well before the point where the AFM order would vanish in these
systems. Up to now the question whether the two states coexist or cause a phase
separation is not finally answered. By further substitution we find in all systems a
decrease in the superconducting critical temperature, which in most cases leads to a
non-superconducting metallic end member like in the case of BaFe2P2.

Unlike the cuprates, where an insulating AFM ground state is found for the parent
compound, which then turns into ametallic behaviour towards the overdoped regime,
in the pnictides we observe a metallic behaviour for the entire phase diagram. While
the insulating behaviour in the cuprates is caused by strong Coulomb interaction U ,
best described by Mott-Hubbard physics, it was found in LDA+DFMT calculations,
see Sect. 4.1 and Ref. [8, 16] for more details, that the pnictides are more susceptible
to changes in the Hund’s rule coupling J . This being the origin of the magnetic order,
the interactions are not strong enough to completely localize the electrons, which
would cause an insulating behaviour.

http://dx.doi.org/10.1007/978-3-319-48646-8_4
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1.2.3 Magnetic and Orthorhombic Ground State

In the beginning many theories invoked that nesting driven enhancement in the Lind-
hard response function causes both the superconducting and the anti-ferromagnetic
state [17, 18]. As time evolved it became clear that the formation of the AFM state
does not necessarily require perfect nesting, shifting the view from an itinerant elec-
tron picture to a local magnetic order [18]. Density functional theory calculations by
Johannes et al. [19, 20] showed that a AFM-stripe order was stabilized due to a lower
ground state energy that was gained over a range of roughly 1eV from the Fermi level
concluding that the density of states at the Fermi level are only secondary. However
we should point out that while DFT provides correct solutions for the ground state, in
reality those calculations are carried out in the local density approximation (LDA),
which also gives a much larger magnetic moment than measured experimentally [8],
raising the question for the validity of the LDA results. Yin et al. [8] extended these
calculations by using DFT+DMFT (dynamic mean field theory). While their results
on the magnetic moment of the systems was in better agreement with the experi-
mental results, they also found that without considering nesting a magnetic order
would be possible due to localization of the electrons. However they further argued
that the presence of nesting helps in stabilizing this order. For example KFe2As2 is
a compound, where strong mass enhancement does not lead to magnetic order. We
will have a closer look at those results in Sect. 4.1 in the context of BaFe2(As1−xPx )2
and focus on some of the consequences of magnetic and orthorhombic ground states
that is found in many of the parent iron-pnictides at this point.

The reason why it was originally believed that the Fermi surface is driving the
AFM order is the observed magnetic wave vector (π,π) in the 2Fe unit cell that
would also link the hole and electron pockets [22]. In real-space the spins are aligned
anti-ferromagnetically along one iron-iron direction and ferromagnetically along the
other [14]. The new Fermi surface topology of the AFM state is then found by a
(π,π)-reconstruction of the tetragonal band structure. In the case of perfect nesting
electron and hole pockets would cancel each other and we would obtain a gap at
the Fermi level leading to an insulating behaviour below the order temperature TN .
However, as we have already mentioned the material remains metallic down to low
temperatures and hence this is a signature that perfect nesting is absent (see Fig. 1.5).
We are rather left with small residual Fermi surface pockets that were observed for
example in BaFe2As2 using Shubnikov-de Haas oscillations, see Fig. 4.6, Sect. 4.1.2
[23].

The AFM order influences the electronic properties of the system and also causes
an orthorhombic distortion of the lattice. This leads not only to a modification of the
band structure, as it breaks the four-fold rotational symmetry, but further causes the
formation of domains within the crystal [21]. In Fig. 1.4 the x-ray diffraction pattern
at temperatures above TN and below are shown. For temperature below TN the pattern
is shown for three different uni-axial strain values in [110] direction. One can see
that by applying strain the O1 peak becomes enhanced, representing an enlargement
of the respective domain. In this configuration the above mentioned observation

http://dx.doi.org/10.1007/978-3-319-48646-8_4
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Fig. 1.4 Section of reciprocal planes around the (220)-tetragonal reflection in BaFe2As2 by x-ray
diffraction. Top left shows the reflection above the ordering temperature TN . Below TN the two
peaks O1 and O2 correspond to the different domains in the crystal. By application of uni-axial
stress the intensity of O1 grows while O2 vanishes. This shows the formation of a single domain in
the system. After Ref. [21]

of quantum oscillations was possible [23], as the mean free path is improved by
increasing the domain size (Fig. 1.5).

1.2.4 Superconductivity and Gap Structure

The high critical temperature of many pnictide superconductors, ranging up to
55K raises the question whether superconductivity in the pnictides is conventional
(electron-phonon coupled) or of unconventional nature. In the case of an electron-
phonon mediated superconductor one should be able to observe the isotope effect
[25]. In the multiband system MgB2 it was possible to show the importance of
electron-phonon coupling on the superconducting critical temperature [26] via the
isotope effect. That the isotope effect does not show a significant contribution
to superconductivity in the iron-pnictides was concluded from measurements in
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Fig. 1.5 Calculated Fermi surface ofBaFe2As2 usingLDA.The quasi-nesting vectorQ = (π,π, 0)
is indicated. After Ref. [24]

Fig. 1.6 Imaginary (a) and real (b) part of the non-interacting susceptibility χ0(q,ω → 0) for
LaFeAsO. After Ref. [17]

SmFeAsO1−y [27], where this effect was found to be absent. It was also shown
theoretically by Boeri et al. [28] that the electron-phonon interaction is rather small,
λ ≈ 0.2. Reasonably high enhancements for the quasi particlemass were observed in
quantum oscillations studies [11, 12] pointing to the presence of moderate exchange
interactions.

The close proximity of the superconducting state to AFM order motivated the
approach of a magnetically mediated mechanism for superconductivity. This led to
a large number of theoretical works based on spin-density wave mediated supercon-
ductivity [6, 17, 29], whichwas originally proposed for the high-temperature cuprate
superconductors [30]. Within this theory the effective coupling is proportional to the
real part of the Lindhard response function Reχ(q,ω → 0) [17], which is enhanced
when nesting is present. In Fig. 1.6 the imaginary and real part of the non-interacting
susceptibility χ(q,ω → 0) are shown, calculated for LaFeAsO1−xFx [17]. A peak
in the real part is observed around the M point. While naturally being repulsive,
spin-fluctuation can still lead to superconductivity in the case of a sign-changing
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Fig. 1.7 Temperature
dependence of the resonant
spin excitation in
Ba0.6K0.4Fe2As2 determined
by neutron scattering. The
dashed line is a guide to the
eye and shows the strong
enhancement of the
resonance peak below Tc.
After Ref. [22]
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superconducting gap �(k + Q) = −�(k). This concept is already well known for
the single band cuprates where it causes superconductivity with d − wave symme-
try. In the case of the multi-band pnictides it was found that some compounds like
LiFeP show a nodal gap structure as determined from magnetic penetration depth
measurements [31]. This being a possible indication of a sign changing gap on one
or more Fermi surface sheets, the counterpart LiFeAs was shown to be nodeless [31],
while possessing a very similar band structure to LiFeP in LDA calculations. The
Q-wave vector that was found in the spin-fluctuation scenario in Ref. [17], indicated
in Fig. 1.5, is (π/a,π/a) suggesting the sign change to occur between electron and
hole pockets and hence causing a nodeless superconducting gap structure. This gap
symmetry is known as s± or extended s-wave.

It was further pointed out in Ref. [17] that it should be possible to observe the
spin-fluctuation using neutron scattering. An enhancement in the intensity would be
expected below Tc. One of the first reports on the existence of the predicted behaviour
was in Ba0.6K0.4Fe2As2 [22]. In Fig. 1.7 the intensity of a resonance peak appearing
for T < Tc is shown which corresponds to the nesting vector predicted by Mazin
et al. [17].

As mentioned, in the case of s±-symmetry of the superconducting gap we would
expect a nodeless superconducting gap structure. However systems such as LiFeP
[31] and BaFe2(As1−xPx )2 [32] show a nodal gap structure in magnetic penetration
depth measurements, see Fig. 1.8. This raises the question of their origin. It turns
out that while in the most simple case the sign of the superconducting gap changed
from electron to hole pockets, it does not rule out sign changes on one or more
of the pockets itself due to intra-band scattering. Theoretical work by Maier et al.
[29] and Kuroki et al. [7] have early on suggested that the presence or absence of
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(a) (b)

Fig. 1.8 Change in the magnetic penetration depth �λ(T ) (a) and the superfluid density λ2 (b) for
BaFe2(As0.67P0.33)2 and Ba0.45K0.55Fe2As2. After Ref. [32]

nodes is closely linked to the Fermi surface topology, which determines the almost
degenerate scattering channels between intra and inter-band pair-scattering. Hence in
order to understand the evolution of superconductivity in the iron-based materials a
detailed experimental determination of the bulk Fermi surface topology is necessary.
We will go into more detail on the possible origins of nodes in Chap.5 where we try
to understand the appearance of nodes in the isovalent systems LiFeAs and LiFeP
from the perspective of Fermi surface evolution.

In the case that spin-fluctuations are the mechanism that drives superconduc-
tivity we are interested to see why some systems show critical temperatures of
up to 55K and others, even so reasonably well nested like BaFe2P2 [33], are non-
superconducting.

One alternative to a purely nesting driven scenario for the difference in pairing
strength is a diverging behaviour of spin-fluctuations close to a quantumcritical point.
When discussing the phase diagram we saw that the maximum superconducting
critical temperature was reached at the point where we expected the AFM order state
to be suppressed to zero. In this range studies on the nuclear magnetic resonance
(NMR) [34] showed in BaFe2(As1−xPx )2 that the spin-fluctuations are maximum
at a critical substitution level of x = 0.33. Similar results were also obtained for
the cobalt doped system [35]. Further studies using magnetic penetration depth [36]
and de Haas-van Alphen measurements on the effective mass [12] have shown a
significant enhancement of the quasi particle mass towards the highest Tc and a
strong peak in the London penetration depth at this point. All these probes are in
agreement with the behaviour expected for a quantum critical system. In this work
we have performed further experiments on the Fermi surface topology and quasi
particle mass, which is presented in Sect. 4.2. We were also able to show direct
consequences of the presence of a quantum critical point on the superconducting
state in BaFe2(As1−xPx )2 which are presented in Sect. 4.3.

http://dx.doi.org/10.1007/978-3-319-48646-8_5
http://dx.doi.org/10.1007/978-3-319-48646-8_4
http://dx.doi.org/10.1007/978-3-319-48646-8_4
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1.2.5 Outline of Thesis

As pointed out above the understanding of the Fermi surface topology and its prop-
erties are essential to tests of the suggested pairing scenarios and so gain further
inside in the origin of high temperature superconductivity. In the course of this work
Chap.2 will provide the theoretical background that we need for the interpretation
of our experimental results. Chapter 3 will then explain the experimental techniques
used for the investigation of pnictides and cuprates in this thesis. In Chap.4 we
will show results obtained on the quantum critical superconductor BaFe2(As1−xPx )2
where Fermi surface studies andmeasurements on the superconducting critical fields
are presented. Chapter5 deals with the isovalent systems LiFeAs and LiFeP, where
we try to gain a deeper understanding on the origin of nodes on the superconducting
gap structure form the perspective of the band structure. We will then turn away from
the pnictides and introduce the stoichiometric high-temperature cuprate supercon-
ductor YBa2Cu4O8. A transport study including Shubnikov-de Haas oscillations in
YBa2Cu4O8 at ambient and under hydrostatic pressure is presented in Chap.6.
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Chapter 2
Theory

This chapterwill give a brief introduction to themost relevant theoretical aspects used
in this thesis, with the aim of explaining the most important formulae and ideas. We
will startwith basic theory of electrons inmetals.Moving on from free electron theory
wewill give the outline to amore realistic theory for our experimental results.Wewill
then describe the theory of quantumoscillations, which is necessary to understand the
main results of this thesis.Wewill then turn to a brief introduction to the fundamental
superconducting properties that we will need in the discussion and interpretation of
experimental results. One of the main aspects of this thesis is the quantum critical
system BaFe2(As1−xPx)2. Also in the cuprate superconductor quantum criticality is
often discussed as possible origin of high temperature superconductivity. A brief
introduction to the topic of quantum criticality shall therefore be given from the
starting point of classical phase transition.

2.1 From Free to Nearly Free Electrons

We begin by a brief introduction following the historical development that led to our
current understanding of the behaviour of electrons in metals that will be given in
the next section. While a first model proposed by Drude treated the electrons as a
classical free electron gas, we will start by modelling the electrons in a solid as free
electron gas in a one dimensional potential considering electrons as waves rather
than particles. This ansatz was first proposed by Sommerfeld and Bethe. Solving
the time-independent Schrödinger equation for this system we find standing waves
whose energies are equivalent to those of a free electron but with discrete wave-
numbers k. In three dimensions a constant energy in reciprocal space is represented
by a sphere that contains a certain number of discrete k-states. The density of states
can then be determined from the number of states per energy interval. This leads to
the relation D(E) ∝ m3/2E1/2 for the density of states in three dimensions, which
holds as long as we consider a non-interacting single electron picture.

© Springer International Publishing AG 2017
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The distribution f (T ,E) of electrons among the available states is determined by
the temperature of the system. The density of electrons is given by

n =
∫ ∞

0
D(E)f (T ,E)dE. (2.1)

Since electrons are Fermions (spin 1/2), we need to use the Fermi-Dirac distribution
function

f (T ,E) = 1

e(E−μ)/kBT + 1
, (2.2)

with the chemical potential μ of the system and the Boltzmann-constant kB and the
Pauli exclusion principle. Form this we find that at T = 0 all electrons populate the
lower energy states up to the chemical potential μ. The sphere of constant energy
EF = μ in k-space that contains all these states is known as the Fermi-surface, and
the energy EF as Fermi-energy.

This simple model of the electrons in a solid produced for the first time the cor-
rect interpretation of the heat capacity of simple metals like copper, where a linear
dependence of the electronic specific heat in temperature was found. However we
would not be able to understand the origin of metallic, semi-conducting or insulat-
ing behaviour in this context. Hence the assumptions made can only give a crude
understanding of the system. In the further course of this work we will now try to
reduce these assumptions of a constant background potential (nearly free electron),
non-interaction (Fermi-liquid theory) and one-electron treatment (density functional
theory) step by step to try to obtain a better understanding of the complex nature of
electrons in solids.

2.1.1 Nearly Free Electron

A more realistic scenario for the background potential in a solid is the use of a
periodic potential. The potential represents the Coulomb potential of the ionic lattice.
We further include the Born-Oppenheimer approximation in our treatment. In this
the electrons respond immediately to any lattice vibration as their typical velocity
is orders of magnitude higher than that of the lattice. Therefore the lattice potential
is given as mean field result, typically represented by the equilibrium state. The
electrons in this scenario are split. While low energy electrons are bound to the
ions, reducing the Coulomb potential by shielding, the so called valence electrons
are free to move without any other interaction than those with the lattice potential.
From symmetry arguments the solutions ψk(r) of the time-independent Schrödinger
equation is now represented by a plane-wavesmodulated by a factor uk(r) periodic on
the lattice, meaning uk(r) = uk(r + rn), with the lattice periodicity rn. The resulting
single-electron solutions
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ψk(r) = uk(r)e
ikr (2.3)

are known as Bloch-waves. In reciprocal space we find that the potential is periodic
with the vector G, so that ψk+G(r) = ψk(r) and hence E(k) = E(k + G). This
shows that the single particle energy E(k) is periodic in reciprocal space and hence
in further treatment we only need to consider the first Brillouin-zone (BZ).

We will now consider the dispersion E(k) for a very weak potential, meaning that
we first only consider the periodicity, leaving the strength of the potential negligible.
In this casewe find the dispersion relationE(k) for a free electron periodically spaced
in reciprocal space as shown in Fig. 2.1a. At the BZ boundaries the energies E(k) are
degenerate. In quantum mechanics this leads to the superposition of the two plane
waves. Now we add the magnitude of the periodic potential. The two superimposed
plane waves will have different energies resulting from a phase difference. This leads
to the lifting of the degeneracy of E(k) and a splitting of the energies at the crossing
points. This is schematically shown in Fig. 2.1c. Therefore we find now that electrons
in the presence of a periodic potential do not possess a continuous energy spectrum.
This we know as the band structure of a solid. With this we can also understand the
origin of metallic and insulating behaviour. If the Fermi energy is located in between
bands then the available bands are filled and we need to overcome the energy-gap
to the next band in order to excite electrons. In the case where the Fermi energy
lies within a band this is not the case and a continuous increase in energy will lead
immediately to excited electrons.

(a) (b) (c)

Fig. 2.1 Dispersion relationE(k) for (a) a free electronmodel (b) for an infinitesimal small periodic
potential and (c) a periodic background potential leading to the band structure in solids
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2.2 Fermi-Liquid Theory

In the next step towards our understanding of electrons in metals we want to include
interactions of electrons. For this wewill turn toFermi liquid theory (FL). This theory
developed by Landau [1] for neutral Fermions was originally motivated to describe
the rare isotope of Helium 3He. Fermi liquid theory has been a powerful tool as it
correctly describes properties such as the quadratic temperature dependence of the
resistivity at low temperatures and the temperature dependence of the susceptibility.
Today however most novel phenomena are concerned with the emergence of non-
Fermi liquid like behaviour such as one-dimensional systems, or systems that are
tuned close to a quantum critical point where the approximation of weak interacting
Fermions does not hold any more. We find this non-Fermi liquid behaviour, typically
characterized by ρ ∝ T in systems like the iron-pnictides and cuprates studied in this
work [2–4]. However lacking a theory with the same predictive power as the Fermi
liquid theory, especially close to quantum critical points, we try to understand these
materials based on how they deviate from the conventional prediction by FL theory.

In order to implement interactions to the free-electronmodel we start by assuming
thedistribution functionn0(k,σ)of thenon-interacting system.When introducing the
interactions to this non-interacting systemwe have to keep inmind that any excitation
will only possess a certain life-time τ after which the system will relax. However we
need to turn on the excitations adiabatically such that the same distribution function
also describes the interacting system. This leads to the limitation that the life-time τ
in the system needs to be sufficiently long such that they are longer than the adiabatic
introduction of excitations. This limits the theory to describe weak interactions that
produce excited states close to the Fermi level.

As we are interested in electrons in a solid we use the Fermi distribution at T=0
for our non-interacting system. Hence all occupied states take the value n0(k,σ) = 1
and all others are zero. The adiabatic introduction of interactions to the system, has
two further consequences. While the distribution n(k,σ) of the new quasiparticle is
given by the same form as n0(k,σ) at T = 0, the eigenstates are superpositions of
the original non-interacting eigenstates. The difference between the distribution of
free-electrons and quasiparticles and that of electrons in a Fermi liquid is shown in
Fig. 2.2 [5]. While the quasiparticles, as required have the same distribution as the

n(k) n(k)

kk

z

1 1

kF kF

(a) (b)

Fig. 2.2 Probability distribution n for a state k to be occupied at T=0. a For a non-interacting
electron system, or quasiparticles in a Fermi liquid and b for electrons in an interacting Fermi liquid
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free electron system, the interacting electrons in the Fermi liquid show a reduced
step at the Fermi level. The remaining step causes the picture of a Fermi surface
to remain valid in the case of an interacting system and the size of the jump Z is
inversely proportional to the effective mass of the quasiparticles.

From the concept of quasiparticles,which form the basis of this theory,we can now
understand why the free-electron theory was so powerful in its predictions. The qua-
siparticles, describing the interacting system, are thought of as non-interacting gas,
where the collective interactions of the system are represented by changes in charac-
teristic parameters such as the quasiparticle mass. This however will not change the
qualitative results of the temperature dependence of for example the specific heat,
but only their absolute magnitude. Further it allows us, within the approximation
of a weakly interacting system, to map the problem of collective interaction on a
non-interacting single particle wave-function.

We now consider what happens to the energy ε of the system when we add one
quasiparticle. For weak interactions we assume a linear dispersion around εF , which
leads to the new energy of the system [5]

εp = εF + pF(�k − pF)

2m∗ , (2.4)

with the Fermi momentum pF . Here we assume that the Fermi wave vector kF is
unchanged from the non-interaction system. The velocity of the quasiparticle is
given by the energy-momentum derivative

v = dε

dp
= pF

m∗ = m

m∗ vF . (2.5)

This shows that the group velocity of the quasiparticle, which is modified due to
interactions, is modified by the ratio of the bare electron mass to the massm∗ known
as effective mass or quasiparticle mass.

So far we have only considered a single quasiparticle neglecting any contribu-
tion of interaction to the total energy. The energy dispersion including exchange
interactions is given as [6]

ε = εF + pF(�k − pF)

m∗ +
∑
k,σ

fkσ,k′σ′δnk′σ′, (2.6)

where δnk′σ′ represent changes in the particle distribution and fkσ,k′σ′ are a second
phenomenological parameter known as Landau interaction function. Commonly in
textbooks the properties of the Fermi-liquid are described by the so called Landau-
parameter Fa,s

l , which can be derived from fkσk′σ′ [7].
Both m∗ and f are not independent of each other. Using the Landau-parameter

we can express the effective mass as [7]

m∗

m
= 1 + Fs

1. (2.7)
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Here the superscript s represents spin symmetric interaction. From this we find that in
the casewhere quasiparticle interaction become too strong, for example on approach-
ing an ordered state, the effective mass will diverge. The fact that even in heavy
fermion materials effective masses of m∗ ≈ 1000 were found to be in good agree-
ment with measurements of Sommerfeld coefficient γ, shows the wide variety of
possible applications.

Wewant to point out that the parametersm∗ andFa,s
l are phenomenological values

that need to be experimentally determined. The power of Fermi liquid theory does
not rely in predicting experimental results, but rather helps finding the hallmarks
of strongly correlated effects in solid state physics. It also allows further inside by
linking experimental results on different properties such as heat capacity, magnetic
susceptibility and quantum oscillations.

2.3 Density Functional Theory

At this point we have developed an understanding of relative behaviour of experi-
mental values and their origin within the properties of electrons in system using the
nearly free electron picture. By adding Fermi liquid theory we are further able to
understand the origin of different absolute behaviour of physical properties, such as
the Sommerfeld coefficient, between different materials. We have seen that we can
explain the interacting Fermi liquid as Fermi gas of quasiparticles, where the inter-
actions are taken into account by only two intertwined parameters, the quasiparticle
mass m∗ and the Landau parameter Fa,s

l . However these are so far of phenomeno-
logical nature and need to be experimentally determined. For a better understanding
of the evolution of correlated electron systems, it would be desirable to be able to
predict these values theoretically. For this the density functional theory is a powerful
tool.

The density functional theory (DFT) gets its name from the Hohenberg-Kohn
theorem. This states that the ground state energy is a unique functional of the ground
state density [6]. So far we had assumed plane waves or in the picture of nearly
free electron system Bloch-waves. However we don’t know what the ground state
wave-function of the real electron-system looks like. Therefore here the transition is
made from the ground state wave function to the function of electron-density at place
r. Using the Ritz method one can then write the ground state energy of the system

E0 = E{n0(r)} ≤ 〈ψ|H|ψ〉, (2.8)

with the ground state density n0(r) and the ground state of the system |ψ〉. This could
theoretically be used to find the exact ground state by variation of δE{n(r)} = 0.
DFT hence offers us the possibility to predict the ground state energy of a system
and compare it to experimental findings.

In reality this is not straight forward as the functionals of the kinetic energy
T{n(r)}, the potential energy V {n(r)} and the interaction U{n(r)}, that make up E,
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are unknown. While V {n(r)} can be assumed to follow the single particle potential
as we used in nearly free electron theory, the kinetic functional remains unknown
and the interaction functional can only be estimated to the electrostatic exchange
plus a term Eex{n(r)}, the exchange interaction [6].

Kohn and Sham proposed to solve the problem by writing the energy again as a
functional of a single particle wave functions ψi(r) using [6]

n(r) =
Ne∑
i=1

|ψi(r)|2. (2.9)

This leads to theKohn-Sham equationswhich can be used iteratively to get a solution
of the kinetic energy functional. The assumption to use a single particlewave function
leads to the fact that the use of the kinetic energy and single particle potential leads
still to an exact solution of the many body problem. The reason that the use of a
single particle wave-function is applicable lays again in the concept of quasiparticles
which we can describe in this way. The interactions are then described by their band
mass, enhanced over the free electron mass. On the other hand this limits application
to weakly coupled systems. All aspects of the many body problem are now contained
in the exchange interaction Eex{n(r)}, whose form is unknown. We therefore have
the same problem as in Fermi liquid theory where the form of the Landau-parameter
was not unknown.

As mentioned, the DFT formalism is theoretically exact, but in order proceed we
need to make some approximations and hence the results obtained by calculations
can only be as good as the validity of the approximation to the real system. The
typical approaches to find Eex{n(r)} involves the local density approximation (LDA)
where Eex at place r only depends on the density n at point r or the generalized
gradient approximation (GGA) that involves in addition to the density at point r, the
gradient ∂n/∂r. Both methods are limited to static exchange and correlation effects
that are approximated locally. It hence leads to a band structure that lacks long
range and fluctuating interactions as well as strong coupling. For this more advanced
theories such as dynamic mean field theory (DMFT) are necessary. Typically the
theoretically determined values of band structure and derived mass, band mass, are
compared to experimental results. The comparison then holds information whether
the local approximation describes the system well or if additional effects need to be
taken into account.

DFT calculations have been successfully used in weakly correlated systems such
as sodium. In strongly correlated systems however it has its limits, for example in the
cuprate-superconductors where it predicts a metallic behaviour while experiments
have found insulating behaviour in the parent compounds. The reason for this can
be best described when we turn back to Fermi liquid picture. The use of a single-
particle description, as present in the Kohn-Sham equations, is a good approach as
long as we can define the quasiparticles as free electron gas. This treatment is correct
when the spectral weight E(k,ω) is well represented by strong peaks as seen in
Fig. 2.3a for a non-interacting, or (b) for a weakly interacting system as described by



22 2 Theory

�pF (k − kF )
m

�pF (k − kF )
m∗

A(k, ω)

ω

A(k, ω)

ω

ω2

A(k, ω)

ω

(a) (b)

(c)

Fig. 2.3 Spectral function A(k,ω), gives the probability of an electron with momentum k to be
found with a given energy ω. a For a non-interacting electron the probability is a delta-function,
b for a Fermi liquid, where the quasiparticles are superimposed of non-interacting states, the peak is
smeared out and c for a strongly correlated system, likeMott-Hubbard insulators, where the weakly
coupled treatment breaks down and no quasiparticle peak is found

Fermi liquid theory. The stronger the interactions become, themore eigenstates of the
non-interacting eigenstates need to be taken into account, which leads to enhanced
broadening or even a shift of the spectral weight as shown in Fig. 2.3c which is
typically found in Mott-Hubbard physics where strong Coulomb repulsion U needs
to be taken into account. In this case the system is no longer well described by a
LDA.

2.4 Bandstructure Calculations

The following section shall give a brief introduction to the basis of band structure
calculations as performed in this work and the most common terms found within.
The aim is to sketch the process rather than a detailed theoretical description. Amore
detailed treatment can be found in Ref. [6, 8].
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2.4.1 LAPW

The linear augmented plane wave (LAPW) is a combination of the Wigner-Seitz-
method which assumes spherical harmonics for the wave functions of the atoms and
the plane wave method which is based on the solution of the Schrödinger equation
using Bloch-functions. While the first method proves to be inaccurate in the region
between atoms the second is challenging when trying to describe the atomic orbitals,
as it requires higher order terms. The way around this is to split theWigner-Seitz cell
in two parts. For the inner part of radius R we assume a spherical potential, while for
r > R a constant potential us used. Due to its shape, the resulting potential is known
as muffin tin potential. For the solution of the Schrödinger equation one uses linear
combinations of the form

ψε(r) =
∑
l,m

Al,mYl,m(ϑ,ϕ)χl,ε(r), (2.10)

for r < R. Yl,m(ϑ,ϕ) and χl,ε(r) are spherical and radial part of the wave functions
and Al,m are Bloch-coefficients. In the region where r > R plane-waves of the from

φk(r) = eikr (2.11)

are used. The dispersion relation ε(k) is then achieved by the condition ψε(R) =
φk(R).

2.4.2 WIEN2k

In this work the WIEN2k package [9] was used for bandstructure calculations in the
iron-based superconductors. Within this package the functions described in LAPW
are used as basis set for the Kohn-Sham equations within the DFT algorithm. The
calculation then follow the Ritz method to minimize the differential with respect to
the linear combinations of augment plane waves. In order to estimate the exchange
interaction the LDA or GGA approach can be used. The used procedure follows the
outline:

1. start with a guess of the density n0(r)
2. determine the single-particle potential from ni(r)
3. application of LDA or GGA to determine the exchange correlation function

Eex(ni)
4. solving the Kohn-Sham Equation HKSψ = εψ
5. determine the new density ni+1((r)) from ψ
6. if ni+1 
= ni start over with ni+1 as input if not we have have found ground-state

density and energy
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2.4.3 Dynamic Mean Field Theory

In the course of this work we will compare our experimental results to those obtained
by GGA band structure calculations. However there is also a variety of studies in the
field of iron-based superconductors that go beyond this approximation and incorpo-
rate dynamic mean field theory (DMFT) into their calculations [10–12]. DMFT is
in these calculations based on LDA calculations. While in LDA we don’t make any
assumptions on interactions, except of limiting ourself to a local mean field effect,
DMFT includes correlations due to Hubbard U and Hund’s rule coupling J . These
input parameters can more or less be tuned freely and are mostly limited by physical
validity.

The choice of input parameter however leads to the fact that we can not see it as a
first principle calculation. Also we have to take into account that while systems like
the cuprates, where strong onsite Coulomb interaction can be well represented with
DMFT [13], the long wave length spin interactions, likely present in the iron-based
systems, are not captured in these calculations [11].

2.5 Quantum Oscillation

So far we have focused on the theoretical description of electrons in metals. In this
section we will add the magnetic field to this description with the focus on quantum
oscillations. In Fermi liquid theory as well as in DFT we have pointed out that we
do not possess an exact knowledge of the exchange interaction of electrons in solid.
However within Fermi liquid theory we know that those interactions are contained in
the Landau parameters. This can be accessed experimentally using the temperature
dependence of quantumoscillation amplitude and are determined as effectivemasses.

Using quantum oscillations in combination with LDA calculations we can further
find a theoretical model of the Fermi surface topology that can help us understand
electronic correlations in the system.

Within this study we will determine how the effective mass is enhanced over the
free electron mass. We should bear that the band mass can refer to different theories
and so we need to point out that throughout the context of this work we will use
band mass mb as the mass that has been determined by LDA calculations and hence
already includes on-site interactions, at the mean-field level.

Wewill beginwith a semi-classical treatment and then include quantummechanics
to reach the Lifshitz-Kosevich formula that describes the de Haas-van Alphen effect
and lets us extract the relevant information from our experimental results.
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2.5.1 Semi-classical Electron in a Magnetic Field

Lets start by considering a free electron in a uniform magnetic field. The motion of
the electron will be governed by the Lorentz-force

�
dk
dt

= −ev × B. (2.12)

dk/dt is only non-zero perpendicular to the magnetic field B and the velocity of
the electron v. The energy of the electron is then constant and its velocity can be
expressed as

v(k) = 1

�
∇kE(k). (2.13)

From this we conclude that the electrons are bound to orbits in k-space of constant
energy perpendicular to B.

The time that is needed for one revolution tc is given by

tc = �
2

eB

∂S(E, k‖)
∂E

, (2.14)

where S is the k-space area of the electron orbit. This is expressed more commonly
using the cyclotron frequency

ωc = 2π

tc
= eB

mc
, (2.15)

with the cyclotron mass

mc = �
2

2π

∂S(E, k‖)
∂E

. (2.16)

In the case of a free electron system mc = me.

2.5.2 Quantum Mechanical Description

To describe the electrons in the system in a more precise way, a quantummechanical
treatment is necessary. The motion of the electron in the magnetic field has to satisfy
the Bohr-Sommerfeld-condition

∮
pdq = 2π(r + γ)�. (2.17)
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In this notation r is an integer value, γ a phase which still needs to be determined
and p the canonical moment

p = �k − eA, (2.18)

with the vector potential A defined by B = (∇ × A).
By substituting for p and solving the integral it turns out that the orbits are such,

that they enclose integer values of flux-quanta φ0 = h/e. Transferred into k-space
the area of the orbits is given by

S⊥(E, k‖) = (r + γ)
2πB

φ0
, (2.19)

which is known as theOnsager-relation [14]. It is immediately clear that for constant
magnetic field the area S⊥ is constant for all k‖. These tubes are the Landau-tubes
illustrated for a free-electron system in Fig. 2.4.

We are still left to determine the phase γ. This can be done by solving the
Schrödinger equation for a free electron in an applied externalmagnetic field.Assum-
ing the field pointing along the z-direction we obtain for the orbital energy levels

Fig. 2.4 Schematic of
Landau tubes parallel to the
applied magnetic field B for
a free electron gas with
spherical Fermi surface
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En =
(
n + 1

2

)
�ωc + �

2

2m
k2z . (2.20)

While the energy parallel to the field stays unaffectedwe again obtain the quantization
of energy perpendicular to the magnetic field direction. Comparing this result with
the previous and substituting the cyclotron frequency ωc we obtain the phase γ = 1/2.

As the size of the orbit changes with field, the Landau-tubes will eventually cross
the Fermi-level. The rate at which this happens is determined by the spacing of two
consecutive orbits in field

�

(
1

B

)
= 1

Bn
− 1

Bn+1
= 2π

φ0Sextr
. (2.21)

Here only extremal orbits on the Fermi-surface perpendicular to Bwith area Sextr are
taken into account. Why this is the case will be discussed later. This determines the
frequency

F = 1

�(1/B)
= φ0

2π
Sextr (2.22)

at which the Landau-tubes cross the Fermi-level. As we consider the non-interacting
case at T = 0, only states up to the Fermi-level are populated. This means that as
the Landau-tube crosses the Fermi-level the states empty and cause a changes to the
density of states at the Fermi-level. This periodicity is reflected in the heat-capacity,
magnetization and other physical properties which are related to the density of states
at the Fermi-level.

2.5.3 De Haas-Van Alphen Effect

The system which we are studying is best described by the temperature T , the
volume V and the chemical potential μ. Therefor to study this system in more detail
we will turn to the thermodynamic potential �. The magnetic moment of the system
can be derived from � by the derivative

M = −(∇H�)|μ=const . (2.23)

In order to obtain the thermodynamic potential for the Landau tubes of interest here,
it is necessary to derive � at the previously determined energy levels (Eq.2.19)
and the degeneracy of each Landau tube. A detailed derivation of this can be found
in reference [15]. At this point we will focus on the resulting expression for the
thermodynamic potential and its implications on the magnetic moment.
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The thermodynamic potential of electrons in amagnetic field is expressed as series
over all harmonics p [15]

� =
( e

2π�

)3/2 e�B5/2

m∗π2

∣∣∣∣∂
2S

∂k2z

∣∣∣∣
−1/2 ∞∑

p=1

p−5/2RTRDRS cos

[
2πp

(
F

B
− 1

2

)
± π

4

]
. (2.24)

Following Eq.2.23 we obtain the parallel magnetic moment

M‖ = −
( e

2π�

)3/2 2Fe�B1/2

m∗π

∣∣∣∣∂
2S

∂k2z

∣∣∣∣
−1/2 ∞∑

p=1

p−3/2RTRDRS cos

[
2πp

(
F

B
− 1

2

)
± π

4

]
. (2.25)

This formula is known as the Lifshitz-Kosevich formula. The component perpendic-
ular to the field direction

M⊥ = − 1

F

∂F

∂θ
M‖, (2.26)

will be used later in the description of the torque magnetometery and should only be
mentioned for completeness.

In the Lifshitz-Kosevich (LK) formula we find that the amplitude of the signal is
altered by the second derivative of the cross-sectional area |∂2S/∂k2z |−1/2. This is
known as the curvature factor. In the case of an almost cylindrical Fermi-surface the
variation of the orbits along the kz direction will be very small in the vicinity of the
extremal orbits. This will lead to the fact that the curvature factor will get large, there-
fore favour the observation of quasi-2-dimensional sheets of Fermi-surface rather
than spherical sheets where the change along kz is much larger. Physically this can
be understood by imagining a Landau tube crossing the Fermi-surface in the case of
a cylinder and in the case of a sphere. While for the cylinder in the case of B ‖ kz all
state suddenly empty at the same time, the Landau-tube empties continuously in the
case of the sphere only leaving a small portion of the original state to empty at the
extremal orbit.

The factors RT , RD and RS describe damping of the quantum oscillation due to
sample and material specific parameters. While there are more influences such as
mosaic effects that can reduce the oscillation amplitude we will focus on these three
main factors and discuss them in the next section.

2.5.4 Damping Factors

In the following we will discuss the the main damping factors influencing the oscilla-
tion amplitude. While the LK-formula was derived for a non-interacting electron gas
the origin of the damping factor comes from many-body interaction and scattering
mechanisms. However it can be shown that this does not influence the form of the
LK-formula [16].
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2.5.4.1 Finite Temperature

In the case of finite temperature the Fermi-Dirac distribution-function becomes
smeared out. This has the effect that instead of a sudden depopulation of the Landau
tubes when crossing the Fermi level the depopulation becomes smooth. In the case
that the Landau-level spacing is smaller than the smearing kBT of the Fermi-dirac
distribution the depopulation of Landau tubes becomes continuous. As there is no
sharp energy-level of depopulation anymore, we need to consider the contribution of
a range of depopulation around the Fermi-level EF . The change of dS/dEwithin kBT
of the Fermi-level will, as we have seen in the previous section (Eq.2.22), contribute
a spectrum of frequencies. The superposition of these and their individual phases
will cause a reduction in the oscillation amplitude. This reduction can be expressed
as [15]

RT = X

sinh(X)
, (2.27)

with

X = 2π2pkBTm∗

e�B
≈ 14.69pm∗ T

B
. (2.28)

The temperature dependence at constant magnetic field is entirely determined by the
effective mass m∗. The reason for this can be seen when we combine the origin of
the phase smearing dS/dEwith Eq.2.16. At finite temperature the Fermi distribution
leads to the population of a states around EF . From this we find a distribution of
frequencies that due to interference lead to a reduced spectral weight of the main
frequency. For flat bands crossing the Fermi-level one finds large values of dS/dE
and hence a wide spread of frequencies. In order to observe a sharp peak in the
oscillation spectrum one needs to go to much lower temperatures than for bands that
have small variation of S around EF .

We should keep in mind that the mass which will be determined using the temper-
ature dependence of the dHvA-amplitude is renormalized by many-body interaction
such as electron-electron and electron-phonon interaction over the band mass mb.

The reason for the magnetic field entering Eq.2.27 come from the spacing of
Landau-levels. In the previous section we had found (Eqs. 2.15 and 2.20) that the
Landau-level spacing is �E ∝ B/mc. Hence the effect of phase-smearing will be
reduced by higher magnetic fields as the spacing of Landau tubes will become larger.
An example of the temperature damping is given in Fig. 2.5 for different effective
masses in the range typically found in this work, and for a constant mass at different
magnetic fields used in the current study of the iron-based superconductors.
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Fig. 2.5 The temperature damping term is plotted at B = 30T for different effective masses m∗
(left panel) and for a constant effective mass m∗ = 6me at different magnetic fields (right panel)

2.5.4.2 Finite Lifetime

The effect of a finite life-time τ of the quasiparticle can be taken into account by intro-
ducing a Lorentzian broadening of the Landau-levels. The phase-smearing resulting
from this effect is represented by [15]

RD = exp

(
pπ

ωcτ

)
(2.29)

and is known as the Dingle-term. The expression in the exponent can also be
expressed in terms of the mean free path l. For this we substitute ωc using Eq.2.15

π

ωcτ
= πmc

eBτ

vF

vF
= π

eB

�kF
l

, (2.30)

where we used τ = vFl. By assuming a spherical orbit and Eq.2.22 we can simplify
this expression further

π

eB

�kF
l

= �π

e

√
2e

�

√
F

lB
≈ 1140

√
F

lB
. (2.31)

Themass, which enters the Dingle term,mc, is not the renormalized mass that was
found for the effective mass. It was derived theoretically by Wassermann et al. [17]
and experimentally proven by Harrison et al. [18] that the mass used in the Dingle
term is the band-massmb which can be found by band-structure calculation and only
includes the renormalization due to the ionic lattice of the system [16]. We can also
understand this by comparing the origin of the phase smearing in the two scenarios.
While for the temperature damping term the distribution function is modified at finite
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temperature, in the case of a finite life time the Landau levels are broadened. Many-
body effects like electron-phonon coupling, effecting the dispersion relation E(k)
at EF , hence enhance the effective mass measured in RT , but keep the Landau level
spacing, determined by ωc, constant. This holds that the field dependence and hence
the mean free path is unaffected by the many body interactions.

2.5.4.3 Spin Factor

In a paramagnetic system the electron-bands originating from spin-up and spin-down
electrons are degenerate in zero field. This degeneracy is lifted under the influence
of a magnetic field by Zeeman-splitting with an energy-difference of �E = gμBB,
with the Bohr magneton μB and the gyromagnetic ratio g.

This leads to a phase-smearing influenced by the spin-mass mS of the system,
which is related to the Pauli-susceptibility that is not enhanced by electron-phonon
interaction. Hence it differs from the effective mass determined by the temperature
dependence.

The damping-factor can be calculated as [15]

RS = cos

(
pπg

2

ms

mb

)
. (2.32)

The spin factor can lead to so call spin-zeros. Those are regions in the angle depen-
dence for which the field-direction causes the split energy levels to be different by
one flux-quantum, which cause a destructive superposition. However one has to be
careful not to mistake these spin zeros with geometric zeros in the angle dependence
caused by superposition of different extremal orbits. Those effects were for example
found in Tl2Ba2CuO6+δ [19].

2.5.4.4 Extremal Orbits

As mentioned before the observed quantum oscillations originate only from extreme
cross-section-areas perpendicular to the applied field. This powerful tool, which
allows us to map the topology of the observed quantum oscillation shall be discussed
in a bit more detail, as it might not be clear at first sight why this is the case. We
will assume a Fermi-surface which varies as k⊥ = cos(k‖), where k‖ refers to the
direction parallel to B. Using Eqs. 2.22 we will find a distribution of frequencies
along k‖. However, while most of these frequencies correspond to a smooth variation
of the electron motion along k‖ a strong effect in the energy of the system is observed
where dF(k‖)/dk‖ is minimal and hence large sections of Landau tubes empty. This
criteria describes the extremal orbits on the Fermi-surface.
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An alternative way to find this result is to assume the frequency distribution F(k‖)
which we already introduced. The expected signal can be calculated by

M =
∫

sin

(
2π

F(k‖)
B

)
dk‖. (2.33)

The integral has to be carried out over the entire frequency distribution and phase
smearing. This then gives the already known result that the signal only contains
significant contributions form the extremal orbits.

2.6 Drude Model—Electronic Transport

The Drude model, which was the first to describe transport of electrons in metals,
models the electrons as classical particles that follow Newton’s law of motion

m
dv
dt

= eE − m

τ
v, (2.34)

for an electron of charge e in a electrical field E. The second term on the right
hand side represent the friction that an electron experiences. The factor 1/τ is of
phenomenological nature, seen as strength of the friction whose microscopic origin
is not specified. The differential equation holds two solutions. The homogeneous
one v ∝ exp(−t/τ ), which shows that in absence of an electrical field the electron
velocity decays exponentially. The factor τ is therefore seen as a mean life time. For
the inhomogeneous differential equation at t � τ we obtain a constant velocity

v = eτ

m
E, (2.35)

which is proportional to the external field E. From this we find for the current density

j = nev = ne2τ

m
E = σE, (2.36)

where we have used Ohms law in the last step. We see that the electrical conductivity
σ of a metal is expected to be proportional to the carrier concentration and life time.
The mean life time of a carrier is similar to the scattering time that we found in the
description of the dHvA effect. While for the measurements of quantum oscillations
samples with large τ as found from the residual resistivity σ−1(T = 0) are beneficial,
the two values are not identical. The scattering rate τ in conductivity is mainly
dominated by large angle scattering, while the values found in the Dingle term in
dHvA include all types of scattering [15].
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We will now include an external magnetic field, which alters the movement of the
electrons and forces them on spherical orbits as already discussed in Sect. 2.5.1. The
equation for the movement of the electrons is then given by

dv
dt

= e

m
E + e

m
v × B − 1

τ
v. (2.37)

We chose to apply the magnetic field along the z-axis B = (0, 0,Bz). In the presence
of a magnetic field the conductivity now given by a tensor as the magnetic field
breaks the symmetry of the system. The conductivity tensor is given as

σ = ne2τ

m

⎡
⎢⎣

1
1+ω2

c τ
2

ωcτ
1+ω2

c τ
2 0

− ωcτ
1+ω2

c τ
2

1
1+ω2

c τ
2 0

0 0 1

⎤
⎥⎦ , (2.38)

with the cyclotron frequency ωc = eB/m. In the limit of very high magnetic field or
high purity samples we find ωcτ � 1, which leads to

σxy = ne

B
(2.39)

for the transverse conductivity known as Hall conductivity and

σxx = 0 (2.40)

for the longitudinal conductivity. While the result found for the Hall effect is in
agreementwith experiments the vanishing conductivity is not verified in experiments.

To solve this problem we need to consider a system with two different carriers.
This can be realized by assuming different effective masses, charges or scattering
times. In this model one now finds that the total current j contains parts from both
carriers

j = σ1E + σ2E. (2.41)

Therefore we obtain a change of resistivity due to the presence of a magnetic field
[6]

�ρ = ρ(B) − ρ(0)

ρ(0)
. (2.42)

For clean systems we find that where the residual resistivity ρ(T = 0) becomes
small the magnetoresistance increases. In a single band system this scenario can be
realized by a k dependent effective mass or Fermi velocity.
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2.7 Superconductivity

It took almost 50 years from the discovery of superconductivity by Kermlingh Onnes
until the first microscopic understanding given by Bardeen, Cooper and Schrieffer
(BCS). On the way to this theory a number of attempts for the description of this
new ground state of electrons in a solid were made. In this section we will follow
this path and start by the phenomenological thermodynamic treatment of the London
brothers. From their work the London penetration depth is derived that describes the
Meissner effect, where an external magnetic field is expelled from the bulk of the
superconductor. We will then turn to the Ginzburg-Landau theory, which deals with
the upper and lower limiting fields of superconductors based on Landaus theory of
phase transitions. Finally we will end at the BCS theory which up to now is our
best microscopic understanding of superconductivity. On the way we will focus and
discuss those physical properties that will later be important in the analysis and
understanding of experimental results.

2.7.1 London Penetration Depth

The London-penetration depth was first expressed by the London-brothers in their
phenomenological work on the thermodynamics of superconductivity [20].
It describes the length-scale on which a magnetic field goes to zero inside a super-
conductor.

We start by assuming that for T < Tc a portion of the total carrier density n
has condensed to form the superconducting carrier density ns. We can describe their
motion analogue to the previous section

mv̇s = −eE, (2.43)

where we neglected the last term of the Drude-model as we assume the mean scatter-
ing of the electrons to go to infinity for a perfect conductor. By substituting vs with the
current density js = −nsevs, we come to the conclusion that unlike in Ohms-laws,
where the current density j is proportional to the electric field E, here the time-
derivative of js is proportional to E. This leads to the fact that for a direct current
there will be no potential difference over the sample. By using Maxwells-equation
∇ × E = −∂B/∂t we can transform Eq.2.43 to

∂

∂t

(
∇ × j + nse2

m
B

)
= 0. (2.44)

While this expression is valid for all conductors with the scatting time τ → 0, in
the Meissner state the flux is zero in the static case. Hence for a superconductor in
the Meissner state the expression in the brackets must be zero. This then gives the
London-equation
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∇ × j + nse2

m
B = 0. (2.45)

By applying this equation to find out how themagnetic field changes upon entering
a superconductor we find that it decays exponentially

B(x) = B0e
−x/λl , (2.46)

inside the sample, with the characteristic length-scale

λL =
√

m∗

μ0nse2
, (2.47)

the London-penetration depth. Two things are important to notice. First the value of
the London penetration depth is proportional to the superconducting carrier density
in the limit of T = 0. This means that since most metals have similar charge carrier
densities they will also possess similar penetration depth values only normalised by
the effective mass m∗ of the relevant system. Further at the superconducting critical
temperature Tc ns goes to zero and hence the penetration depth diverges. Secondly,
as mention, the penetration depth of a superconductor, even at T = 0, depends on
the normal state property m∗.

An alternative approach to derive the London penetration depth is from the finite
frequency Drude model

σ(ω) = neτ 2

m

1

1 − iωτ
. (2.48)

The integral over all real-part frequency is conserved and gives ω2
p = πne2/m, the

plasma-frequencyωp, which is independent of the scattering rate. By taking theDrude
model in the limit of τ = ∞ we obtain the conductivity for the ideal conductor, that
we can use with j = σE in the above expression and obtain the same result for λL,
which we could also write as

λ2
L = π

μ0ω2
p

. (2.49)

As the conductivity σ is also given as integral over the Fermi surface σ ∝ ∫
v2
xv

−1
F dS

[21] we can link the penetration depth to this and find λ−2
L ∝ ∫

v2
xv

−1
F dS. This shows

that the London penetration depth is dominated by sections of the Fermi surface
where the Fermi velocity vF is high and hence the effective mass is low.
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2.7.2 Ginzburg-Landau Theory

The Ginzburg-Landau (GL) theory is a powerful tool as a first attempt to explain
new experimental results in superconductors. Its macroscopic description from a
thermodynamic viewpoint provides the possibility to explain systems without an
exact microscopic understanding and can therefore hold more general results than a
microscopic theory.

Ginzburg andLandaubased their theoryon theLandau-theoryof phase-transitions.
It starts from the view-point of the enthalpy of a system with an order parameter ψ
which is zero above a critical temperature Tc, non-zero below and one at T = 0.
Unlike the Landau-theory of phase-transitions where the order-parameter is real
and constant in space, in the GL-theory the order parameter is given by the macro-
scopic superconducting wave-function ψ(r) = ψ0(r) exp[−iφ(r)]. This is of com-
plex nature and does not necessarily need to be constant in space. As the enthalpy is
real we need to take the absolute value of the complex wave-function, which repre-
sent the density of superconducting particle |ψ|2 = ns. We then develop in terms of
n2. Taking this ansatz the GL-theory is strictly only valid close to Tc where ns → 0.
In the vicinity of Tc the enthalpy per unit volume g is then given by

gs = gn + α|ψ(r)|2 + 1

2
β|ψ(r)|4 + 1

2μ0
|Ba − Bi|2 + 1

2ms
|(i�∇ − esA)ψ(r)|2, (2.50)

with the superconducting gs and normal-state gn enthalpy-density and the charge es
and mass ms of the superconducting wave function ψ. The last therm of Eq.2.50
represents the kinetic energy of the Cooper pair due to an external magnetic field
presented by the vector-potentialA. The second last is the displacement energy need
to reduce the applied magnetic field Ba to zero inside the superconductor Bi in the
Meissner-state. Since derived from a purely thermodynamic standpoint without any
knowledge of the microscopic origin, this is probably the most general theory we
have on superconductivity. However we will see in Sect. 4.3, where we discuss the
upper and lower critical field, that for quantumcritical systems, even thismost general
form fails.

2.7.2.1 Upper Critical Field

In addition to the London penetration depth λ, the GL theory predicts a second
characteristic length scale of a superconductor, the GL coherence length ξ. This is
derived in the zero field limit to [22]

ξ =
√

�

4m|α| . (2.51)

While α is unknown in this phenomenological approach a more precise formulation
of ξ is found in BCS theory. Ginzburg and Landau realised that for κ = λ/ξ > 1/

√
2

the systems can lower their energy in field by allowing additional superconducting-

http://dx.doi.org/10.1007/978-3-319-48646-8_4
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normal conducting interfaces. This causes the so call vortex-state between the lower
and upper critical field and leads to higher critical fields were the material shows a
finite resistivity. Using the GL-formalism we can determine this upper critical field
Hc2 at which the gs = gn. It can be shown [22] that this is the case for

μ0Hc2 = �0

2πξ2(T)
. (2.52)

The GL coherence-length ξ represents the length-scale at which the superconducting
wave-function can vary from ψ = 0 to ψ = ψ∞. The criteria of ψ = 0 is fulfilled
in the vortex core of a type-II superconductor in the mixed state. With this we can
identify ξ as the vortex-core radius and Hc2 as the field at which the normal-state
vortex-cores start to overlap. Energetically speaking Hc2 marks the magnetic field at
which the kinetic energy of the screening currents exceeds the condensation energy
gn − gs. This is also known as the orbital limiting effect. The Cooper pairs could
also be broken due to the alignment of the spins in the applied magnetic field. This
is known as the Pauli limiting field.

2.7.2.2 Lower Critical Field

The lower critical fieldHc1 of a type-II superconductor is the magnetic field at which
the Gibbs-free energy of a Abrikosov vortex inside or outside the sample is equal
[22]. For this we need the energy of a vortex line per unit length [22]

ε1 = Hc1�0

4π
. (2.53)

Inside the vortex the superconducting gap goes to zero and we find a normal state
core. As in GL theory we describe the superconducting state with the complex
function ψ, which varies at the superconducting-normal conducting interface like
|ψ| ≈ ψ∞ tanh r

ξ
[22]. In the case of a vortex we can therefore identify the parame-

ter ξ as the core radius. The presence of a single flux φ0 = h/2e causes screening
currents that lead to a field profile [22]

h(r) ≈ φ0

2πμ0λ
ln

λ

r
, (2.54)

in the limit of λ � ξ for ξ � r � λ. This would cause a divergent behaviour, which
is cut off at r ≈ ξ, the core radius. The vortex line energy can the also be expressed
as the contribution form the field energy h and the kinetic energy of the shielding
currents

ε1 ≈
(

�0

2πλ

)2

ln κ. (2.55)
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In the derivation of this expression the core has been neglected. We find that the
energy of a vortex line per unit length is inverse proportional to λ2. By combining
Eqs. 2.53 and 2.55 we obtain

Hc1 ≈ �0

4πμ0λ2
ln κ (2.56)

for the lower critical field. To account for the vortex core contribution that was
neglected in the derivation a constant correction factor is used such that we find the
result for lower critical field [22]

Hc1 ≈ �0

4πμ0λ2

(
ln κ + 1

2

)
(2.57)

2.7.3 BCS Theory

The first successful microscopic understanding of superconductivity was published
by Bardeen, Cooper and Schrieffer (BCS) [23]. It had been shown by Fröhlich
[24], that when electrons are placed inside a crystal most of the repulsive nature
of the Coulomb interaction is screen. By assuming a simple screening model like the
Thomas Fermi model we can limit the repulsive behavior to short range interactions.
Further Fröhlich showed that it is possible for the electrons to develop an attractive
interaction if one includes interactions with the lattice. Cooper then argued that by
taking two electrons at T = 0 and placing them just above the Fermi level one can
obtain a bound state which is energetically more favorable than having the electrons
just above the Fermi-level [25]. This bound state is known as a Cooper pair. Built on
Fröhlich’s result that the electrons can interact via the lattice, only electrons of order
�ωD were included (ωD is the Debye-frequency). Using the necessary conservation
of momentum one finds that the lowest energy state appears for k1 = −k2 where k1
and k2 are the wave-vectors of the interacting electrons. Hence the wavefunction is
symmetric under spatial inversion restricting the spin part to be antisymmetric. The
Cooper pairs therefore represent a singlet state.

Using the Cooper-pairs as a basis, BCS constructed a wavefunction to describe
all electrons in the system. Without going into too much detail the main results of
the BCS-theory shall be presented here.

Its was found that the energy of an elementary excitation can be expressed as [22]

Ek =
√

ε2k + �2
k (2.58)

with the normal state energy ε and the self-consistent expression for the energy gap

�k = −
∑
k′

Vkk′
�k′

2Ek′
. (2.59)
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The BCS-theory assumes that the interaction potential V is constant and negative
(attractive) for all k and hence results in a constant energy gap �. However in the
high-Tc materials that are discussed in this thesis this is not the case and hence the
more general form including the k-dependence has been used.

Further the BCS-theory gives a result for the coherence length ξ which we had
already discussed in the Ginzburg-Landau theory. Here the coherence length can be
calculated as

ξ = �vF

π�
. (2.60)

It now represents the length-scale, spacial extend, of a Cooper-pair.
The superconducting phase transition at Tc in zero field is is of second order,

showing a jump of the heat capacity. The size of the anomaly in the heat capacity
was determined in the BCS-theory for a s-wave superconductor in the weak coupling
limit to be

�C = 1.43γTc, (2.61)

where γ is the normal state Sommerfeld-coefficient which describes the electronic
contribution to the heat capacity and is related to the effective mass via the density
of states [26]

γ =
(

πk2bNAa2

3�2

)
m∗. (2.62)

2.8 Phase Transition

Understanding the emergence of newphases and their origin has been or great interest
for a long time.We can best understand phase-transitions by turning to thermodynam-
ics. In this work the energy of a systemwill be described using the Gibbs-free-energy
G as it depends on temperature T and magnetic field B, which are typical parameters
varied in the lab. Here we hold the particle number. and hence the chemical potential,
constant. We assume that a system undergoes a phase-transition as function of the
external parameter T . The point at which the phase transition occurs is determined
by the relation G(T < Tc) = G(T > Tc), where Tc is the critical point. Within the
Landau-theory of phase transitions [1] we find that the transition can be of different
order n. Following the classification of Ehrenfest the order of a phase transition is
given by the lowest derivative of the free energy with respect to a thermodynamic
parameter that is not continuous. If the order parameter, which is the first derivative
with respect to the external field, is discontinuous than the phase transition is of first
order. However for a continuous order parameter the phase transition is of higher
order. This classification fails in the case of divergent order parameter at the phase
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transition such as in ferro-magnetic materials. In modern physics we therefore dis-
tinguish between first-order phase transition, characterised by a latent heat involved
in the transition, and second-order or continuous phase transitions which are char-
acterized by a divergent fluctuations. In the transition that will be of interest for us
and were discussed by Landau are of the second type.

In this case the phase transition is characterized by a continuous thermodynamic
quantity m known as the order parameter, which is zero in the disordered state and
then increases to reach one in the zero-temperature limit. While the average over
the sample in the disordered state is zero, this does not rule out fluctuations of the
order parameter. Those fluctuation possess a coherence length ξ which at Tc goes to
infinity. We can express this in the form

ξ ∝ |t|−ν, (2.63)

with the dimensionless parameter t = |T − Tc|/Tc and the critical exponent ν.
While in this notation fluctuations are treated as spacial variations, when considering
systems in quantum field theory, one treats them quasi-classical in d+1 dimensions,
where the additional dimension is the imaginary time scale. For the fluctuation in
time a typical life-time τc is given by

τ ∝ ξz ∝ |t|−νz. (2.64)

Following these criteria we find for T > Tc a disordered state with dynamic fluctua-
tions of the order parameter and long-range static order of m for T < Tc. Hence we
call ν the correlation length critical exponent and z the dynamic critical exponent.

We now considered the energy �ωc of the fluctuations, which we compare to
the thermal excitation kBT of the system if Tc is finite. For a finite life-time of the
excitations we find that

ωc ∝ τ−1
c ∝ |t|zν . (2.65)

For the case where �ωc << kBT , which can be rewritten as

|T − Tc| < T−zν
c (2.66)

the system can be treated classical [27]. However as Tc → 0 this is not the case
anymore and hence the description of the critical behavior close the critical pointmust
take quantum mechanical effects into account. Therefore these phase transitions are
called quantum phase transitions (QPT) and the point at which the order parameter
goes to zero is called a quantum critical point (QCP). Also from the comparison
of the energy levels we find that in the vicinity of a QCP a region exists where
�ωc ≥ kBT and hence the properties of the system are governed by the fluctuations
and quantum mechanics.
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Before going into detail we should point out how a continuous phase transition
appears in experiments. For this we will consider the heat capacity. As mentioned
before the order parameterm is zero in the disordered state and changes continuously
in the ordered state fromzero. Thereforewe canperformaTaylor expansion atT = Tc
of the Gibbs-energy

G(m,T) − G(0,T) = 1

2
am2 + 1

4
bm4 + ..., (2.67)

which is valid for small m. Also we only consider the case where G(m) = G(−m),
hence systems that do not break time reversal symmetry, like magnetic systems in
an external field. By taking the second derivative T∂TG we obtain the expression for
the heat capacity

CV (m,T) − CV (0,T) =
{
Ta2/b T < Tc
0 T > Tc

. (2.68)

We see that for a continuous phase transition the heat capacity has a jump at Tc.
Remember this is a mean-field treatment and does not include any fluctuations of the
order-parameter in the disordered state. By including those fluctuations one obtains
the Gibbs-energy in the form G[m((r), τ ),T ], which is now a functional of the order
parameter. To solve this one needs to find the partition function of this ensemble.
An example of this can be found in Ref. [28]. In the case of fluctuations of the order
parameter the heat capacity takes the form

C ∝ |T − Tc|−α. (2.69)

Instead of a step at Tc, the heat capacity diverges when approaching the critical point.
The exponent α is a characteristic critical exponent. Following the same derivation
one can also find critical exponents for other observables which are all characteris-
tic for a given class of phase transitions [27]. For the Gaussian approximation the
exponent α can be written as α = 2 − d/2 with the dimensionality d of the system
[29]. However the Gaussian approximation only holds for not too big fluctuations.
In general the form α = 2 − dν is found, known as hyperscaling.

2.8.1 Quantum Phase Transition

Wewill assume a system to have an ordered ground state below a critical temperature
T0. By tuning a non-thermal parameter g(pressure, magnetic field or chemical poten-
tial) it is possible to suppress T0 to zero temperature (see Fig. 2.6). Following Eq.2.66
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Fig. 2.6 Schematic phase
diagram of a quantum critical
point. Taken from Ref. [3]
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we find that the region in which we can treat the critical behavior in the classical limit
vanishes as we approach the QCP gc. The only fluctuations available at this point
to break the order are quantum fluctuations, resulting from Heisenberg’s uncertainty
principal. However, as we are experimentally not able to reach this point, we should
raise the question: why is the appearance of a QCP important to the research con-
ducted in this work? It was found in a variety of experiments that in the case of a QCP,
physical properties such as transport, heat capacity andmagnetic susceptibility differ
from their typical behavior [3, 30]. While in most metals resistivity as a function of
temperature is ρ ∝ T 2, one finds ρ ∝ Tn, with n < 2 in systems for g = gc (see
for example Ref. [31, 32]). Quantum critical systems at finite temperature posses a
finite length scale [33, 34]

Lτ = �c

kBT
(2.70)

which limits the imaginary time axis for thermal fluctuations in two or more dimen-
sions. As Lτ was given in the Heisenberg model c is the spin-wave velocity, specific
to magnetic phase transitions. By comparing the length-scales Eqs. 2.64 and 2.70,
two regimes emerge in the phase diagram for finite temperatures. For Lτ > τc
conventional behaviour, as described by Landau Fermi-liquid theory, is found. For
the opposite case Lτ < τc a non-Fermi liquid behaviour, as indicated in Fig. 2.6,
evolves, which is found as typical v-shape region in the phase diagram using resis-
tivity measurements [30, 32]. Also we conclude that in the low-temperature regime
the excitations from the ground state are weakly affected by thermal fluctuation but
relax on the much shorter quantum-time scale. In a mean field approach the system
can therefore be explained by the ground-state wave-function. However starting at
g = gc and going to high temperatures an increasing range of the phase diagram is
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influenced by the quantum critical point, even for g 
= gc. The appearance of this
unusual part of the phase-diagrammotivates interest in QCP and might be the reason
for novel phases at finite temperature emerging from QPT.
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Chapter 3
Experimental Setup

In this chapter will turn to the experimental procedures used in this work. We will
start by looking at the external parameters temperature,magnetic field andhydrostatic
pressure which were used to tune the properties of the measured materials, reach the
ground state at low temperature or suppress the superconducting ground state. For this
we will focus on the mostly used systems, such as a bath-cryostat for temperatures
between 0.3 and 300K and the generation of magnetic field from a few milli Tesla
to several tens of Tesla. Further we will discuss the procedures used to grow high
quality single crystals for the study of Fermi surface topology and quantum critical
phenomena in iron pnictides. The further course of this chapter will then introduce
the measurement techniques that were used and developed for the detailed studies
of electronic and magnetic properties of the systems studied in this work.

3.1 Low Temperature

Like Kamerlingh Onne’s discovery of superconductivity many new phenomena are
often revealed by cooling samples close to zero temperature. While ferromagnetic
phases can have ordering temperatures well above room temperature, like in NdFe-
alloys, a lot of interest today lays in novel ground states that emerge close to QCP.
In this work the temperature range of 0.3–300K was used.

3.1.1 4He-System

Helium is the only element that does not solidify at ambient pressure at any tempera-
ture. When referring to helium we mean the more common isotope 4He. The boiling
point of helium is 4.2K. When reducing the vapour pressure above a liquid helium
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bath the boiling point drops, following closely the behaviour expected for an ideal
gas

p · V = NkBT . (3.1)

We can see that at constant volume the pressure is proportional to the temperatures
of the system. The phase transition from liquid to gas is of first order and is described
by the Clausius-Clapeyron-equation [2]

dp

dT
= L

�VT
, (3.2)

with the latent heat L of the material. By combining the two equations we find that

p(T ) = p0e
−L/RT , (3.3)

which shows that it will become exponentially more difficult to reach lower temper-
atures with lower pressure. At 2.17K helium changes into a new phase known as the
superfluid phase, which is the chargeless counterpart to a superconductor. The transi-
tion temperature is known as the λ-point of helium. The base temperature reached in
pumped cryostats is typically around 1.2–1.5K, depending on the system. We have
used this technique mainly at the pulsed field facility in Toulouse. The used cryostat
is shown in Fig. 3.1. In this system the upper-reservoir is filled with helium. The
needle valve can be open or closed during the filling, depending whether the desired
temperature for measurements is below or above 4.2K. For temperatures T ≤ 4.2K
the needle valve is kept open to allow both upper and lower reservoir to be filled.
For temperatures below 4.2K the needle valve is then closed and the pressure above
the lower reservoir is decreased via the pumping port. This allows to reach temper-
atures down to 1.4K at the sample position. During this process the helium level
drops until it reaches the sample position in which case a sudden increase in sample
temperature is observed. In order to increase the hold-time at base temperature, the
pressure above the bath was reduced slowly, maintaining a temperature decrease
of 0.1–0.2K/min. For temperatures between 1.5 and 4.2K the pressure above the
lower reservoir was varied to achieve the desired temperature. Before carrying out
the experiment the temperature was held constant for at least 5 min allowing for a
good thermalisation. After each high field experiment the valve to the pump was
closed and the lower reservoir pressurised to atmospheric pressure by opening the
needle valve. For experiments at base temperature typically three experiments could
be carried out before refilling the system. Also by leaving the needle valve open a
hold time of 12 h or more, depending on the quality of the vacuum in the isolating
chamber, was achieved, such that the sample could be held at 4.2K over night.

The system could also be used to reach temperatures above 4.2K or to allow for
constant temperature sweeps from or to room temperature. For this the needle valve
was kept closed and a heater, wrapped around the inner tail, was used. The upper
reservoir, attached to the sample space, as shown in Fig. 3.1 allows for cooling via
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Fig. 3.1 Technical drawing of the 4He cryostat used at the LNCMI Toulouse [1]. See text for
detailed explanation

the exchange gas in the sample reservoir. In order to stabalise temperatures above
4.2K the pressure in the sample space was typically reduced to p ≈600mbar to
reduce convection and reach a more stable condition.

Care needs to be taken when using the heater to bring the sample to room temper-
ature before taking it out, as the cryostat will have a strong temperature gradient from
room temperature in the tail to low temperature, 4.2–77K depending on the fill level,
at the upper reservoir back to room temperature at the top of the cryostat. In order to
prevent thermal shock, especially for fragile samples, we lower and raised the probe
stepwise, while monitoring the temperature at the sample position, so obtaining an
average cooling rate of ≈3K/min, instead of using the heater.
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As the pulsed field experiments are carried out in less than 1s a long hold time at
the desired temperature is not necessary. In contrast the experiments that we carried
out on Hc1 or also the heat capacity a longer hold time at temperatures between
1.5 and 300K is desired. For this a different system was used. The sample in these
systems are no longer submerged in the liquid, but rather sit in vacuum. Similar to
the lower reservoir a so called 1K-pot is connected to the main bath via a capillary.
By using a thin, long capillary or a needle-valve the flow to the lower reservoir can
be limited, allowing to hold it constantly at base temperature, even during the refill
of the main bath. The sample platform is then attached to the 1K-pot using a weak
link. This is typically done using non-metallic materials like fibreglass-composites
together with a metallic wire (typically cooper or silver) whose cross-section can be
varied to achieve the desired thermal link. By attaching a heater and a thermometer to
the sample stage, these systems allow to reach continuous temperatures from 300K
to based temperature of ≈1.5K.

3.1.2 3He-System

For temperatures below 1K one needs to use 3He, which is a rare isotope of helium.
It has a boiling point of 3.2K, which is lower than the more common Helium-4.
As 3He has a nuclear magnetic moment of S = 1/2 and including the electrons is
considered a Fermion. As it is the only material with such a low boiling point at
ambient pressure it can be produced very clean and hence is the most clean system
to study Fermi liquid theory.

The form in which 3He is used is very similar to that just described for 4He.
However the fact that it is very rare and hence more expensive raise the need for a
contained system to minimize losses. Within this thesis a 3He-systemwas used at the
National High Magnetic Field Laboratory (NHFML) Tallahassee inside the Hybrid
Magnet. A schematic of the system used is shown in Fig. 3.2. Unlike 4He, 3He is
stored in gas form in a so called dump at room temperature. To prevent losses the
pressure inside the dump is kept below atmospheric pressure. In order to condense
the gas a 3He-insert, built as double-wall system for thermal isolation at the sample
position, is placed inside a 4He bath. As the boiling point of 3He is lower than that
of 4He, the temperature in the main bath is reduced, like described in the previous
section. We will then open the condensing valve to allow 3He to flow into the sample
space. If the main bath was only cooled to 3.2K, the boiling point of 3He we would
not be able to condense any liquid, as the vapour pressure above the liquid would be
one atmosphere, but the gas is stored at reduced pressure.We therefore always use the
base temperature of the bath to condense the maximum amount of 3He for a longer
hold time. During this process wemonitor the pressure inside the sample space. Once
the pressure becomes stable the maximum amount of gas has been condensed. We
then close the condensing valve and open the pumping valve. With this we can just
like in the 4He system set temperatures between the bath temperature and typically
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Fig. 3.2 Schematic drawing of the 3He systemused at theNHMFLTallahassee to reach temperature
below 1K. See text for detailed explanation

0.3K by reducing the pressure above the 3He. The evaporated 3He is pumped back
into the dump.When the liquid level drops below the samplewe repeat the procedure.

It should here also be mentioned that 3He systems can also be used for measure-
ments in the temperature range of 1.5 and 2.5K, which could be reached by 4He.
However as 4He changes into the superfluid state at 2.17K it is pointed out in Ref. [3]
that the Kapiza-resistance between the sample and the bath change unfavourably. To
prevent this the sample was placed inside a 3He bathwhich allows for a better thermal
coupling, specially important in pulsed field measurements, as metallic samples can
experience significant heating due to eddy currents.

3.2 Magnetic Field—Gauss to MegaGauss

When trying to understand high temperature superconductors it is desired to probe
superconducting and normal state properties of these materials at low temperatures.
While themeasurement of the lower critical field requires high resolutionfield sweeps
in the range up to a few hundred Gauss, the normal state at low temperatures can
often only be reached in fields above 50T. In the presented work a variety of different
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magnet systems, including resistive, superconducting, hybrid and pulsed field were
used, covering almost six orders of magnitude in magnetic field strength. While
commercial superconducting magnets were used for calibration of Hall-sensors and
reference measurements, the main results of this work were obtained in the hybrid
magnet at NHMFL in Tallahassee, the pulsed field facility in Toulouse and in a low
field resistive magnet built by the author in Bristol, which we will explain in more
detail in this section.

3.2.1 Superconducting Magnet

Superconductingmagnets provide the opportunity to carry out research at low energy
consumption in fields up to 21T. The magnet typically made of Nb3Sn or NbTi wires
needs to be cooled to low temperatures to become superconducting. They are there-
fore submerged in liquid helium. As the critical current density rises upon cooling,
one can gain maximum field by further cooling the system to the λ-point of helium as
described before. Due to the wire being superconducting, low sweep-rates are pos-
sible at low energy consumption. Superconducting magnets are typically equipped
with superconducting switches, allowing to created a closed superconducting loop,
which enables these systems to run for long time without loss and the need of a con-
stant power supply. Commercial systems are available in the laboratory in Bristol
enabling measurements up to 20.5T.

3.2.2 Hybrid Magnet

For fields beyond 20T we turn first to the high field resistive and hybrid magnet
systems. These systems are available at a variety of facilities around the world. The
magnets aremade of lowohmic resistive conductors. The energy necessary to provide
the field up to 35T is dissipated as heat which needs to be compensated by cooling
with large amounts of water. This has two effects. First the cooling system adds to
the total energy consumption, but further more it causes significant vibrations that
can cause enhanced noise in these systems. Currently the highest dc magnetic field
is available at the NHMFL Tallahassee. Here a 34T resistive magnet is place inside a
large 11T superconductingmagnet. So the system is able to provide a dc field of up to
45T, known as Hybrid. While the 11T superconducting magnet is used as constant
background field the resistive magnet is used to sweep the magnetic field between 11
and 45T with a maximum sweep-rate of 7T/min. In order for the superconducting
magnet to be operated up to 11T it needs to be cooled below 4.2K. For this the system
has a dedicated liquefier providing a constant supply of superfluid 4He. Owing to the
complexity of the system there is currently only one of these systems in the world.
For this reason the time allocated to any user is very limited. We have therefore used
samples that were already measured in pulsed magnetic field to take high resolution
angle dependence measurements and effective masses on various crystals.
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3.2.3 Pulsed Field Magnet

For optimally doped high temperature superconductors often fields beyond 45T are
necessary to access the normal state at low temperatures. For this so call pulsed
magnets are used. The setup of the pulsed field system used at the LNCMI-Toulouse
is shown in Fig. 3.3. A resistive magnet, reinforced with fibreglass composites, is
cooled to 77K using liquid nitrogen. The cryostat including the sample is fixed inside
the bore of the magnet. Different approaches can be used in mounting the cryostat.
While in one case the cryostat is hanging freely inside the magnet, this is only found

Nitrogen

magnet coil

field center - 
sample position

helium cryostat

nitrogen cryostat

Fig. 3.3 Drawing of the pulsed field setup used at the LNCMI Toulouse. The pulsed field coil (see
picture) is placed inside a liquid nitrogen cryostat. Taken from Ref. [1]
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effective for a completely decoupled system. As this is typically difficult to achieve,
the cryostat, in the work conducted as part of this thesis, was always tightly coupled
to the magnet. In order to carry out a magnetic field sweep, capacitors are charged
with several megajoules of energy, depending on the desiredmaximum field and then
discharged into the magnet. The resulting field profile is shown in Fig. 3.4. While
line (a) and (b) show field profiles of a 60T and 70T magnet respectively, line (c)
shows the profile obtained from a dual-coil configuration. In these systems field up to
100T (1MGauss) are possible now at the NHMFL Los Alamos, by discharging part
of the energy into a separate inner coil once the outer coil has reached its maximum
field value.

During the discharge of the capacitors into the coil part of the energy is dissipated
in the coil as heat causing its temperature to raise close to room temperature. In
order prevent damage to the coil the system is allowed to cool back down to liquid
nitrogen temperature prior to a new pulse. As the cooling will be proportional to the
difference in temperature between the bath and the coil, the cooling process would
slow down ones getting close to the boiling temperature of liquid nitrogen, 77K.
In order to cut down on cooling time the vapour pressure above the liquid nitrogen
bath is decreased to reduce the temperature of liquid nitrogen bath. Due to this it is
possible to carry out an experiment every 80 min.

The biggest limitation on the available maximum field is the strong constrain that
available materials set to the coil design. As the field is rapidly increased the Lorenz-
force that acts between individual layers of the magnet cause an internal pressure.
This pressure can cause damage to the conductor. In order to prevent the coil from
breaking a special fibreglass known as Zylon is used. However as the pressure inside

Fig. 3.4 Magnetic field versus time for different coils commonly used in pulsed magnetic field
facilities. Profile (a) and (b) were obtained from a 60 and 70T coil at the LNCMI-Toulouse, while
profile (c) was taken from a 90+xT coil at the HighMagnetic Field Laboratory Dresden.While coils
(a) and (b) are single-coil designs, coil (c) is a coil-in-coil design. Here the inner coil is triggered
shortly before the maximum field of the outer coil
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the coil grows like the square of the maximum field, limits of available materials are
reached typically around100Tmaking this the practical limit for current applications.

We have used this technique to screen and study a variety of crystals using dHvA
at the LNMCI Toulouse. Also electrical transport experiments and transport under
pressure was carried out in these systems using fields up to 70T.

3.2.4 Resistive Magnet

Superconducting magnets typically exhibit a strong remanent field due to flux trap-
ping in the solenoid. These fields can be up to several milli-Tesla strong, depend-
ing on the maximum field used and can hence hinder the possibility of zero field
cool-downs. For some experiments like the measurement of magnetization this is a
significant limitation. In order to overcome this problem, the measurements on the
lower critical field, have been carried out in a home made resistive magnet cooled
to helium temperature. An aluminium coil-former was used. This has the advantage
of a natural low pass filter in the applied magnetic field due to the skin depth. The
coil-former was chosen to have a wall thickness of 5mm. The skin depth can be
calculated by [4]

δ0 =
√

2ρ

μ0π f
. (3.4)

with the cutoff frequency f , the resistivity ρ and the vacuum permeability μ0. The
resistivity of the former is estimated to ρ = 5 × 10−10�m−1 using the values of
aluminium with a residual resistivity ration of 110 [3]. Then the cut-off frequency is
determined to f = 5Hz, damping any high frequency noise in the applied field.

The magnetic field is controlled by a 16bit digital-to-analog converter (DAC),
built by the author, followed by a voltage-to-current converter. The settings for the
sweep are preloaded to a micro-controller, which then performs the field-sweep
independently. The sweep-rate is set by a delay in milliseconds after which the
controller changes the output-voltage of the DAC by 5bit (0.763mV). As it is desired
to have a continuous changing field a low pass filter is added to smoothen these steps.
The low-pass filter property of the coil-former mentioned above adds to this effect
to produce an even better result.

The field strength versus applied current was determined by using a Hall-sensor
which had been calibrated in a commercial 14T-magnet system before. The profile
of the magnet, shown in Fig. 3.5, was determined by varying the position of the Hall-
sensor. For this and for all subsequent measurements the current through the magnet
was monitored using a Keithley 2000 and used in further experiments as measure of
the applied field with a conversion factor of 20.6mT/A.
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Fig. 3.5 Magnetic field profile of home built resistive magnet. The Hall-voltage of the sensor is
plotted at various positions of the magnet. A constant current of 0.5A was applied to the magnet
for all positions

3.3 Hydrostatic Pressure

Pressure is a powerful tool to reveal new exotic ground states in solid state physics.
In the field of iron-based superconductor it is believed that hydrostatic and chemical
pressure (doping, isovalent substitution) lead to the same effects [5–7]. This is par-
ticularly useful for systems where clean single crystals are not available throughout
the phase diagram. In this work hydrostatic pressure was used to investigate the quasi
particle mass and Fermi-surface topology of YBa2Cu4O8. For this a CuBe-pressure
cell was built to carry out zero-field transport in Bristol. A non-magnetic pressure
cell available at the facility in Toulouse was used for the quantum oscillation study.
We will briefly introduce these techniques in the following section.

3.3.1 Pressure Cell for Zero Field

In order to test samples of YBa2Cu4O8 under pressure prior to experiments in high
magnetic fields a pressure cell was built for zero field measurements. For this we
have followed the design by Walker [8]. The piston cylinder cell shown in Fig. 3.6
was made of copper-beryllium and all parts were annealed for 2 h at 315 ◦C prior to
first use.

For the transport measurements 25µm copper twisted pairs were glued inside the
feedthrough using Stycast 2850. At the edge of the Stycast the wires are likely to
break and are therefore stabilized by an additional layer of soft UHU two component
epoxy.
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Fig. 3.6 Pressure cell used
for zero field measurements.
The cell has a sample space
of 3.6mm and was
successfully used up to
10kbar. Except of the inner
cylinder and the gasket the
cell is entirely machined
from copper-beryllium

locknut 

electrical 
feedthrough 

inner cylinder 
(stainless steel)

nylon cap

outer shell

piston

locknut

When loading the cell, a nylon cup with a inner diameter of 3.6mm and an outer
diameter of 5mm was pressed inside the stainless steel cylinder. This is then filled
with Daphne 7373 used as pressure medium. In order to prevent a collapse of the
nylon gasket under pressure one needs to make sure that no air is trapped when filling
the pressure medium. The stainless steel cylinder and the feedthrough have the same
outer diameter. They were placed inside a guiding cylinder to have good alignment.
In this configuration the feedthrough is pressed inside the nylon cup, sealing it. The
assembly is then pressed inside the cell and fixed with the locknut. In the last step
the piston and top-locknut are fixed. Pressure is applied using an additional piston
placed inside the top locknut. At the same time the sample signal is monitored to
exclude sudden changes that could point to sample imperfection or changes in the
electrical contacts. When the desired pressure is reached, the top locknut is tightened
until the a reduction of pressure on the press is observed.

3.3.2 Pressure Cell for Pulsed Field

When working in pulsed magnetic field the heating due to eddy-currents limits the
choice of materials to those having high resistances or being insulators. At the
LNCMI-Toulouse a pressure cell consisting of Timetal64 with Yttrium stabilized
Zirconia pistons is available [9] that can be used at fields up to 60T without signa-
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tures of heating. YBa2Cu4O8 samples of about 200× 200× 50µm3 were contacted
with Dupont 6838 silver paint, which was cured at 450 ◦C under high purity oxygen.
The samples were then place inside the pressure cell where the contact to the leads
was made using Dupont 4929 silver paint. The sample space has been filled with
silicon oil, used as pressure medium and then covered with a 300µm thick plastic
cover used as gasket (see Fig. 3.7 for details). As the gasket gets deformed into the
sample space, this setup is best suited for thin single crystals. In the present work the
setup was successfully used for measurements up to 10kbar. As the leads running
into the pressure cell are also exposed to the applied pressure, they are protect by a
two-component epoxy. This way they are only thermalized to the bath further away
from the sample. Tests on the cooling power inside the pressure cell were carried out.
For this a resistive wire (heater) with a resistance of R = 3� was placed inside the
pressure cell together with a germanium-gold-thermometer (see Sect. 3.9). Various
currents have been applied to the heater and and the thermometer while monitoring
the temperature inside the cell using theGeAu-thermometer. The results are shown in
Fig. 3.8. In panel (a) the temperature inside the cell is plotted versus the applied power
for the two different cases. A clear difference in the onset of a static�T can be seen.
From this and the low value of cooling power for the case of the GeAu-thermometer,
we conclude that the cooling is mainly provided via the wires. As these are only cou-
pled outside the cell this reduces the cooling significantly. The difference between
the thermometer and the heater onset might be caused by a low thermal conduction
of the pressure medium. This can also be seen in Fig. 3.8b where the onset power for
heating is plotted versus the bath temperature. While little variation is found for the
heater, the thermometer cooling power changes by two orders of magnitude. These
findings are relevant, especially in the case, when very low resistive contacts are not
possible. Therefore when working inside the pressure cell we need to assume the
sample to be in weak contact with the cold reservoir and chose the measurement
current accordingly.

3.3.3 Determination of Pressure

Knowing the precise pressure applied to the sample is essential. The thermal con-
traction of the used materials can cause the pressure inside the cell to change with
temperature. Therefore it is desired to measure the pressure inside the cell at least
in the two limits of room temperature and low temperature. As space is limited a
manganin wire was place inside the cell prior to the measurement and the change
of resistance with pressure applied was monitored. This process has been repro-
duced several times. The data obtained is shown in Fig. 3.9. The observed change in
resistance was converted using

pcell =
(

R

R0
− 1

)
× 2.37 × 10−3 kbar, (3.5)
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whichwas found for T =25 ◦C [10]. In the low temperature limit the pressure has been
determined by using the superconducting transition of lead. As the variation in the
superconducting transition of lead is only �Tc/�p = −(4.2 ± 0.5) × 10−2 K/kbar
[11], great care on the determination of temperature has to be taken. This has been
achieved by stabilizing the temperature every 5mK and holding for several minutes
before reading the resistance value.

3.4 Crystal Growth

As discussed previously, the observation of quantum oscillations relies on samples
with long mean free paths, hence high quality. High quality single crystals of the
111- and 122-family were grown by the author, while samples used in the quantum
oscillations studies where grown by collaborators from the group of Prof. Y.Matsuda
at the University of Kyoto. The procedures used shall be discuss in this section.

Fig. 3.7 Cross-section of
the sample region for the
pressure cell used in pulsed
magnetic field. The cell is
shown before (a) and after
(b) applying pressure. The
deformation of the plastic
gasket is shown in b. Figure
taken from Ref. [9]
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Fig. 3.8 Thermalization test inside a non-magnetic Zirconia pressure cell. a Shows the temperature
versus applied power to a 3� heater (squares) and to the thermometer itself (circles). b Shows the
onset power of heating versus the temperature of the surrounding bath

Fig. 3.9 Change in resistance of annealed manganin wire versus applied pressure to the cell. On
the right axis the corresponding internal pressure is shown

3.4.1 LiFeAs and LiFeP

The growth of LiFeP and LiFeAs is analogous and therefore only the latter will be
discussed here.

For the growth of LiFeAs it is necessary to produce the precursor Li3As. This
is done by mixing Li(99.9%):As(99.9999%) in the ration 3:1 in a boron-nitride
crucible. This is sealed under high-vacuum in a quartz tube. The thermal cycle for
the reaction is shown in Fig. 3.10a. Boron-nitride crucibles are necessary as lithium
is highly reactive and would destroy commonly used alumina crucibles. After the
first part of the cycle the material was removed from the crucible and grinded before
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(a) (b)

(c) (d)

Fig. 3.10 Thermal profile used for the growth of Li3As (a), Fe3As (b) and LiFeAs (c). Panel (d)
shows the susceptibility measured on a sample grown by procedure in [12] and exposed to air for
several days

continuing. This procedure is commonly used in solid state reactions to produce a
homogeneous mixture. As lithium has the lowest melting point of the three elements
involved, we chose this as a flux. Hence a lithium-rich ratio of 1:2 for Li3As:FeAs
was chosen. The iron-arsenide (FeAs) is commercial available. The mixture was
again placed in a boron-nitride crucible and sealed under vacuum in a quartz tube.
Figure3.10c shows the temperature settings that were used to grow the single crystals
from the lithium-flux. Clean single crystals of several cubic millimeter could be
extracted under high-purity argon atmosphere.

Recently an alternative synthesis has been carried out for LiFeAs, which was
proposed by Juza and Langer [12]. In this synthesis the starting materials are Li3As
and Fe3As2. The advantage of this procedure is that the valance of iron does not
change during the single-crystal growth. The temperature settings used for the solid
state reaction of iron and arsenide are shown in Fig. 3.10b. For the single crystal
growth the same temperature settings as previously described have been used. From
this growth small single crystals of typically 500 × 500 × 100µm3 where extracted.
The crystalswheremeasured by ac-susceptibility.A sharp superconducting transition
was observed in the range of 14–16K.While previously superconducting transition at
Tc=18K were reported [13], superconductivity vanished when exposing the samples
to air for a short amount of time. The data shown in Fig. 3.10d however was taken
after exposing the sample to air for several days. This proves to be a promising result
for further investigations.
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3.4.2 BaFe2(As1−xPx)2

Single crystals of BaFe2(As1−xPx )2 are grown by self flux technique from Ba (purity
99.9%), FeAs (99.5%) and FeP(99.5%). The materials are mixed according to the
reaction formula

Ba + 2(1 − x)FeAs + 2x FeP → BaFe2(As1−xPx )2. (3.6)

The materials were mixed under argon atmosphere to the desired stoichiometry and
a typical mass of 1.5g was placed in an alumina crucible. This was then sealed under
vacuum of p ≈ 1× 10−6 mbar in a quartz tube. As the growth requires temperatures
up to 1200 ◦C [14], we are working close to the melting point of the quartz tube. The
quartz tube is therefore placed inside a stainless steel tubewhich is sealed onboth ends
under partial argon pressure. This has two advantages. First it is a safety procedure
that prevents contamination with arsenic or phosphor in case the quartz tube fails.
Further, if the quartz tube becomes soft it will expand due to the vapour pressure
inside. This expansion will be limited by the stainless steel tube. This increases the
chance of a successful growth.

The thermal cycle used is shown in Fig. 3.11a. BaFe2(As1−xPx )2 is not found
to be highly air sensitive when exposed to air. This causes any unreacted material
to oxidize and we find small shiny single crystals like shown in Fig. 3.11b. The
crystals are analysed using x-ray diffraction. Crystals exhibit the expected space
group I4/mmm. However by comparing different crystals from the same growth
using x-ray diffraction, energy dispersive x-ray diffraction and the superconducting
critical temperature, we find that x can vary up to 10% from the nominal value.

(a) (b)

(c)

Fig. 3.11 Panel (a) shows the temperature profile used during the growth of BaFe2(As1−xPx )2.
Panel (b) a resulting crystal with x =0.3 and a frame of the x-ray diffraction taken on this crystal (c)
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3.5 Measurement of Hc1

3.5.1 Setup and Characterization

The measurement of the lower critical field of a type-II superconductor can be chal-
lenging. When carrying out global measurements using vibrating sample magne-
tometers or superconducting quantum interference devices one can only determine
changes in the overall magnetization. However in the case of strong pinning this can
lead to an overestimated lower critical field Hc1. A better way is therefore a local
probe that allows to investigate the flux penetrating field Hp on the edge and in the
center of the crystal.Without surface pinning the entering vortexmoves straight to the
center of the crystal leading to the same Hp at the edge and in the center (Fig. 3.16).

We have chosen to use micro-Hall arrays to measure the local magnetic field
on different places on the sample surface. This technique has already been used
successfully in the past [15, 16]. The Hall voltage that is generated by applying a
magnetic field is

Vh = − I B

nde
. (3.7)

Themagnetic field B is the perpendicular component of the applied field with respect
to the active Hall area of thickness d. The current I runs perpendicular to the field.
e is the electron charge and n is the carrier density which is dependent of the used
materials. The highest sensitivity to the applied field is achieved for low carrier
densities and thin active areas. For this reason mostly 2D electron gases (2DEG) in
GaAs/AlGaAs hetero-structures are used [15]. In the present study different types

Fig. 3.12 Hall resistance versus applied field for a 2DEG and a doped silicon Hall array measured
at T = 10K
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of materials were used. While first 2DEG systems were used, we found that doped-
silicon with carrier concentrations of n = 1 × 1016 cm−3 gave a factor ≈10 lower
response, see Fig. 3.12, but higher reliability for repeated cool down. The used Hall
sensors were produced by J. Fletcher and P. See at the National Physics Laboratory
and clean rooms at the University of Cambridge. In Fig. 3.13b, c two different sensors
are shown. One can clearly see eight different active Hall areas, the first marked by
a cross. The sample is place on the Hall-array using a thin film of grease to hold it
in place and as thermal link. The Hall-arrays are then placed on the sample holder
shown in Fig. 3.13a using GE vanish. Contacts to the Hall array were made using
Epotech H20E silver epoxy that was current for 5 min at 150 ◦C. The platform can
be rotated and locked in two different orientations, parallel and perpendicular to the
applied field. The setup is connected to a probe with 1K-pot. By weakly coupling
the body of the stage to the 1K-pot the probe can be used in the temperature range
of 300–1.5K.

The sensitivity of two doped silicon Hall-arrays with different carrier concentra-
tions were compared in a wide temperature range. The results are shown in Fig. 3.12.
While the solid squares show the results obtained on a doped siliconwaverW745with
n = 1×1016 cm−3 the open circle are obtained on a structurewith n = 1×1018 cm−3.
The sensitivity is in agreement with the nominal difference of a factor 100 in the car-
rier concentration of the used wafer. The W745 wafer is on the limit of the available

(a) (b)

(c)

Fig. 3.13 Stage used for the measurement of Hc1 (a). Different Hall arrays are shown in b and
(c). In b the first active area is marked by a cross for clarity. Samples are mounted using grease as
shown in c
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Fig. 3.14 Hall coefficient for different Hall arraysmade fromdoped siliconwith n = 1×1016 cm−3

(squares) and n = 1 × 1018 cm−3 (circles) are shown in the left panel. The right panel shows the
longitudinal voltage for one active area for n = 1 × 1016 cm−3

concentrations of doped silicon wafer. While a clear change in Hall value is found at
low temperature the sensitivity change still allows it to be used for themeasurements.
In the right panel of Fig. 3.14 the longitudinal part of the resistance is shown. This
is caused mainly by the offset of the Hall-contacts. By comparing this resistance to
that found over the structure we find an alignment miss match of only ≈20nm. This
high precision is essential for high resolution measurements using Hall-arrays. In
the case of a high spacial offset the zero-field signal could exceed the Hall signal by
orders of magnitude leading to high sensitivity of the sensor to small temperature
changes. In the present case we can compare the two effects by taking a linear fit to
the low temperature part of Fig. 3.14b. This gives a change of �R = −0.11�/K.
The sensor can typically be stabilized to better than �T = 5mK. This corresponds
to a noise of �Bsensor ≈ 3 × 10−3 mT, much smaller than the earths magnetic field.
As we expect Hc1 for most materials to be on the order of 10mT or more we can
neglect this contribution in our case.

3.5.2 Signal from Superconductor

In the presence of a superconductor on top of the Hall-array the effective field seen
by the sensor will be reduced due to theMeissner effect. This is schematically shown
in Fig. 3.15. While the field inside the superconductor is zero in the Meissner state
one does not necessarily observe zero response by the Hall-sensor. The effective field
measure

Hef f = Happ − αNM, (3.8)
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Fig. 3.15 Schematic drawing, field penetrating a superconductor and the respective change in field
profile in the underlying Hall sensor

depends on the sample specific parameter α and the demagnetizing factor N . It
reflects the position of the sensorwith respect to the sample.Assuming a homogenous
external magnetic field and a long thin sample parallel to the applied field (N =1),
we would find that α = 1 inside the sample while α → 0 if the sensor is placed far
away from the sample. As the sensor in the present setup is place a few nanometer
away from the sample surface α will be close to one for those placed in the center
of the sample, while the ones on the edge will have an α � 1. We assume α to
be purely dependent on the sample geometry and hence can assume α(Happ) to be
constant. This means we can correct for the field leakage (shown schematically in
Fig. 3.15) by subtracting a linear fit to the low field part of the up and the down
sweep. In Fig. 3.16a the signal form a sensor on the edge (squares) and the center of
the sample (circles) are shown. As mentioned the initial slope, indicated as dashed
lines) changes depending on the sensor position. By subtracting this slope we obtain
the curve in Fig. 3.16b for the sensor at the edge. The field of first flux penetration
is identified as the field where the magnetization deviates from a linear behavior. As
any barrier effects will cause the deviation to follow a B2 dependence one typically
plots the square-root of the sensor field [16–18]. Further in the case of weak surface
barrier effects one expects a change in slope in the down-sweep to occur at the same
field position Hp [18]. This is indicated in the Fig. 3.16b by a linear fit to the low
field part of the down sweep. The data clearly starts to deviate form the linear fit at
H = Hp.

In the analysis so far we have only taken the sensor position into account. To
determine the lower critical field from Hp we need to find the demagnetizing factor
N . This has been done by taking a picture of the sample using a digital camera. With



3.5 Measurement of Hc1 65

Fig. 3.16 Data taken on BaFe2(As0.62P0.38)2 at T =18K at the center (squares) and at the edge
(circles) of the sample. Dashed lines represent linear fits to the low field region. The right panel
shows the data on the edge corrected for the field leakage. The field of first flux penetration Hp is
marked

Fig. 3.17 Lower critical field Hc1 versus temperature for BaFe2(As0.7P0.3)2 with various thickness
to width to width ratios

this it was possible to determine the thickness and width of the sample. These values
can then be used in Eq. 3.12 to obtain Hc1 from Hp.

As Eq. 3.12 was obtained numerically we shall test its validity in the parameter
range used in this work. For this we have measured the same sample repeatedly with
different aspect ratios. The result of Hc1(T ) are shown in Fig. 3.17. Two things are
important to mention. First all the data for different aspect ration b/a are in good
agreement which means that Eq. 3.12 is consistent for the used samples. Secondly
we find a linear dependence of Hc1(T ) at low temperatures. Previously it was found
that samples with strong pinning deviate from this behavior and exhibit an upturn of
Hc1 at low temperatures [19].
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3.5.3 Measurement Procedure

The measurements were performed by first taking a field-sweep above the supercon-
ducting critical temperature for each new run. This was done to rule out any loss of
sensitivity in the Hall sensor over time. The sensor and sample were then cooled to
the desired temperature with a constant sweep rate of 1K/min and the magnet con-
nected to ground. Once the temperature was reached and stabilized to �T ≤ 5mK
the program was set to hold for thermalization. The hold time was typically set to
5min. After this the magnet was automatically reconnected to the power supply and
the field-sweep was carried out. Finally the magnet was again disconnected from the
power supply and grounded. The sample was heated above Tc and held there for at
least 5min before starting a new run. For each temperature a positive and negative
field sweep were carried out and the pure Hall-contribution determined from both
measurements.

3.5.4 Demagnetizing Factor

When applying an external magnetic field Ha to an arbitrary shaped sample the
internal magnetic field Hi is modified by the magnetization M of the sample. The
magnetization however depends on geometric and material specific parameter. Con-
sidering these effect the internal magnetic field is given by

Hi = Ha + χNM(Ha, N ), (3.9)

with the susceptibility χ and the demagnetizing factor N . Here only superconductors
in the Meissner-state will be considered. Hence we set χ =−1. In the used notation
the magnetization of the sample M = M(Ha, N ) = M(Hi , 0) [20]. As for the
Meissner-state the internal magnetic field Hi = 0, the magnetization of the sample
can be written as

M(Ha, N ) = − Ha

1 − N
. (3.10)

At the lower critical field Hc1 = −M . Therefore we can substitute M in Eq.3.10
for Ha giving

Ha = (1 − N )Hc1. (3.11)

This shows that for any sample with N > 0 the applied field where flux entrance
will be observed is suppressed over the real lower critical field. To determine the
effective field seen by the sample a precise knowledge of the demagnetization factor
is necessary.
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The samples that have been measured in this work where all of plate-like shape.
A numerical estimate for the demagnetization factor for such sample was given by
Brandt [20]. In the limit of a thin plate-like sample the field of first entrance Hp can
be converted to Hc1 using

Hc1 = Hp

tanh
√
0.36b/a

, (3.12)

with the thickness b and the length a of the sample.

3.6 Arduino Based Phase-Sensitive Detector

Phase sensitive detectors are widely used among scientists as they allow to measure
signals smaller than the surrounding noise floor. They are based on the mathemat-
ical solution of multiplying two sinusoidal signals. While this technique is used in
different applications like optics and ESR, here the method will be described in the
context of transport measurements as this is how is was used in this study. In the
measurement of the lower critical field it is necessary to probe multiple hall sen-
sors at the same time. For this a number of commercial lock-in amplifiers would be
necessary. In order to reduce the cost and technical demand for this experiment the
development of a low-cost alternative was done by the author as part of this thesis.

To start, lets recap the mathematical solution for the multiplication of two sine-
waves

VDSP = Vref sin(ωre f t + φre f ) ·
∑
i

Vi sin(ωi t + φi ) (3.13)

with Vref , ωre f and φre f being the excitation voltage, frequency and phase of
transport measurement. The signal coming back from the sample is usually of the
sample response and noise coming from the setup and the surrounding, presented by a
sum over discrete noise sources i . In the early days of the technique themultiplication
was done by mixing the two signals in an analog way, while it is done numerically
in most modern instruments.

The result of the multiplications and substitution gives

VDSP = 1

2
Vref

∑
i

Vi sin([ωre f − ωi ]t + [φre f − φi ]) +
(3.14)

1

2
Vref

∑
i

Vi sin([ωre f + ωi ]t + [φre f + φi ])

consisting of two parts, with the sum and difference between excitation and response
frequency. For the response of the sample, which we are interested in, the condition
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ωre f = ωi can be used. This means we are only interested in the DC part of VDSP ,
which can be achieved by a low pass filter. Numerically the low pass filter of order
o is achieved iteratively by

yon = Ayo−1
n + Byon−1. (3.15)

The parameter A and B are dependent on the desired time constant and sampling
time. They are connected by B = 1− A. The value y0n represents the new input value
at a given time. This description follows the behavior found in RC-lowpass filter.
The filter constant A is given by [21]

A = �t

τ + �t
, (3.16)

with the sampling time �t and the filter time constant τ .

3.6.1 24bit Analog to Digital Converter

The procedure described above was implemented on an Arduino Uno [22] that con-
trolled an analog to digital converter (ADC). The chosen ADC is a Analog Devices
AD7764 that has 24bit precision [23]. The circuit design was done using the design
guidelines within Ref. [23] and the design of the evaluation board in Ref. [24]
(Fig. 3.18). The Arduino environment has the benefit that comes as single-board
microcontroller including a built in USB interface. This allows to focus on the data
acquisition and the development of the digital signal processing (DSP) code.

The AD7764 was chosen, as it provides the possibility for 24bit full precision
in the used sampling range, which allows a higher precision on signals with large
background. Further it comes with an input filter that limits high frequency noise
and a full differential input with ±5V input tolerance. The ADC is controlled by
the Arduino board using serial peripheral interface (SPI) connection. This four-wire
interface has twowires for the communication, themaster-clockwhich is provided by
the Arduino and a channel for chip selection. The ADC was calibrated in DC mode.
In this configuration constant voltages are applied to the ADC and a Keithley Digital
Multimeter in parallel as reference. The Arduino reads the 24bit binary number from
the ADC and returns it to the computer via the USB port. This way a calibration
as shown in Fig. 3.19a are achieved. We have further taken measurements with the
input of the ADC grounded. The data is shown in Fig. 3.19b. This hold an rms-noise
level of Vrms = 3.9μV, which corresponds to a useful resolution of 21bit.

For the DSP the Arduino uses one external triggered clock as interrupt. This is
connected with the trigger-out of the excitation, typical a Stanford Research SR830.
Thisway theArduinomeasures the timebetween two rising edges of the trigger signal
and determines so the reference frequency. A second clock is used as sampling time.
It was found that good low noise results are obtained using 10 samples per oscillation
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Fig. 3.18 Schematic outline of the Arduino controlled ADC and the programmed DSP procedure.
Starting by a signal including noise (top left) and the trigger signal as reference (top right) the work
flow is presented. See text for more information

period. The internal clock is configured such that it causes an interrupt after one-tenth
of the oscillation period. At this point the Arduino waits for the ADC to convert the
current voltage. This is then transferred to the microcontroller. This procedure is also
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Fig. 3.19 a Calibration for the analogue to digital converter. The integer value of the chip, repre-
senting the 24bit response, is plotted versus the applied voltage. b Noise contribution from one of
the ADC channels described in the text. An offset of 200μV was removed

illustrated in Fig. 3.18. Further the microcontroller determines the reference point by
calculating the sine and cosine, for in- and out-of-phase component, at the present
time. By multiplying the reference with the data from the ADC we obtain Vdsp. In
the present work a fourth order low pass filter, as described before, was used to get
the ωre f − ωi = 0 component that we are interested in.

This setup was successfully used in measuring Hc1. As we could measure up to
eight sensors in parallel the use of Lockin amplifier would exceed the available
instruments in the laboratory. The procedure presented here provides a cheap alter-
native when working in the low frequency range f ≤ 50Hz. In this configuration
eight identical channels were produced. These were then connected to an additional
Arduino using a two wire inter-integrated circuit (I2C) bus. This reduces the overall
communication time as the opening and closing of the communication-port takes
most time.

3.7 Transport Measurement in Pulsed Magnetic Field

While in the zero- and static-fieldmeasurements commercial Lock-in amplifier allow
to measure signals down to a few nanovolt, these devices are not suited for the use
in pulsed magnetic field. The update rate at which they operate is not high enough to
meat the desired resolution necessary to observe quantum oscillation of several kilo-
Tesla. While in superconducting magnets sweep-rates of 2T/min or less are used, in
pulsed magnetic field we find sweep-rates of up to 2000T/s. Therefore it is desired
to record the signal with a high sampling rate, which is done by using scopecorder
or as in the present case data-acquisition(DAQ)-cards NI PXI-5922. We follow the
same idea as already described in Sect. 3.6. An ac-signal with a typical frequency
of 50 to 60kHz and amplitude of Vexc is generated by an Stanford Research SR830.
This signal is applied to the sample with two series resistors (see Fig. 3.20). The first
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Fig. 3.20 Schematic of setup used to measure transport in pulsed magnetic field at the LNCMI-
Toulouse. The resistor Ri is the current limiting resistor. The reference signal is measured as
voltage-drop over a 10� resistor

resistor Ri is the current-limiting resistor. It ensures that the current applied to the
sample Is does not exceed Vexc/Ri . The second resistor is a calibrated reference. The
voltage over this resistor is measured and digitized. This signal will be used as Vref

(see Sect. 3.6). In the case of the sample resistance being close to Ri it is also used
to determine the correct current used. As the DAQ system has a fixed input-range of
±5V we typically need to amplify our signal to increase the used voltage range. For
themeasurements carried out here INA103 instrumentation amplifierswere usedwith
a fixed gain of 200. For samples with small signals a different amplifier (SSM2019)
was used with a gain up to 1000. The signal was then also digitized using the same
time-base as the reference signal. In order to analyse the data obtained a Matlab-
code was developed which performs the numerical-phase sensitive detection that
was described previously. The used code can be found in Appendix A.

3.8 Torque Measurements

The magnetization M of a sample in an external magnetic field B can be measured
using torque magnetometry. The torque density τ (torque per unit volume) can be
written as τ = M× B. In the case that the applied field lies in an arbitrary direction
with respect to the symmetry axis of the sample the component M⊥ perpendicular
to B becomes none zero.

If the Fermi-surface of the system is anisotropic the contribution M⊥ can be
written as [25]
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M⊥ = − 1

F

dF

dθ
M‖. (3.17)

The angle θ represents the angle of B in the plane perpendicular to M⊥ and F is
related to the extremal cross-section of the Fermi-surface via the Onsager-relation
(Eq.2.22). The resulting torque density can hence be written as

τ = − 1

F

dF

dθ
M‖B. (3.18)

This results shows some limitations that need to be taken into account when perform-
ing measurements using torque magnetometers. The torque signal will vanish when
the applied field B lies within a high symmetry axis of the investigated sample. This
will cause ‘blind spots’. It should also be mentioned that the observed torque will
be τ · V , V beeing the sample volume. While in the ideal case the entire sample can
give rise to quantum oscillation, in reality only a fraction of the of the sample volume
might contribute. Most importantly we notice that the signal amplitude observed will
be proportional to the applied magnetic field.

For the application of torque magnetometry in the field of iron-based supercon-
ductors it is essential to be able to measure microscopic crystals on the order of
100 × 100 × 100µm or smaller. This is possible by using piezo-resistive micro-
cantilever. In this work self sensing micro-cantilevers originally designed for atomic
force microscopy where use. Each device contains a signal lever and a reference.
The reference is used to minimize contributions coming from magnetoresistance.

Samples were attached to the leaver using grease, giving the possibility to reuse
the cantilever. The produced torque in field cause the leaver to bend and results in
a change in resistance of the piezo-element. By using a Wheatstone-bridge setup it
is possible to detect small changes in between the reference and sensor resistance
which correspond to a change in angle of the leaver.

As the technique relies on a bending of the leaver there occurs a subsequent
displacement of the the original angle between the crystallographic axis of the sample
and the applied magnetic field. This leads to a change of the extremal cross-section
perpendicular to field and in the case of large quantum oscillations to the appearance
of new frequencies. This effect is known as torque interaction.

3.8.1 Torque Interaction

As torque interactions can lead to the observation of new frequencies, it is important
to find a way to distinguish between true quantum oscillations and artefacts. In order
to do this data taken by Dr. I. Guillamon on high quality single crystals of MgB2

have been analyzed. Lets start by taking a look at the reason for new frequencies in
the case of torque interaction. Assuming the signal contains quantum oscillations of
the form

http://dx.doi.org/10.1007/978-3-319-48646-8_2
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τi = Ai B
1/2e−αi /B sin

(
2π

Fi
B cos(c(θ − θ0))

)
, (3.19)

with Ai , αi and Fi being the amplitude, dingle-factor and frequency of the different
extremal orbits i . The total observed torque is

τ =
∑
i

τi . (3.20)

The condition for the observation of quantum oscillations using torque magnetom-
etry was that our sample exhibits an anisotropic Fermi-surface. Hence F = F(θ).
The form of the angular frequency-dependence has been studied in detail for MgB2

[26]. For the further steps we assume F(θ) to vary as F0/cos(θ) for small changes
around the angle of interest. Also we neglect the fact that there will be a change in
oscillation amplitude when changing the angle. The main frequencies F1, F2 and F3
(see Fig. 3.21) where filtered and fitted using Eq.3.19. Afterwards we can use the
obtained parameters which will be fixed in the following steps. The effect of torque
interaction is described by

τ =
∑
i, j
i 
= j

Ai B
1/2e−αi /B sin

(
2π

Fi
B cos(c(θ − θ0) − γτ j )

)
. (3.21)

The parameter c is fixed by knowing the angular dependence of F . This leaves one
free parameter γ which converts the measured change in resistance into the angle of

Fig. 3.21 FFT taken on high quality on dHvA-signal of MgB2 by Dr. I. Guillamon (black dots).
The data was taken at T =0.3K in the field range of 10 to 18T. The red line shows the fit to the data
using Eq.3.21 and the procedure described in the text
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displacement. As the torque interaction is typically much smaller then the quantum
oscillations, higher accuracy was found by fitting the data in frequency space. The
resulting fit is shown in Fig. 3.21. Good agreement between the data and the fit was
found for γ = 0.18 ◦/�. This factor can now be taken as calibration for the used
SEIKO PRC120 micro-cantilever.

3.9 Germanium-Gold-Thermometer

Germanium-gold thermometers have been know to work in the range of low temper-
atures up to room temperatures for many years [27]. Germanium-gold thin films have
been produced by sputtering alternating layers of germanium and gold with a molar
ratio of Ge:Au of 0.83:0.17. The thin films were post annealed at 450◦ for 1 h. The
resulting thin film resistors were found to be sensitive over the temperature range of
1.5–300K, shown in Fig. 3.22. By varying the gold concentration used, the sensitivity
of the produced films can be tuned. By lowering the gold concentration the system
becomes more sensitive at elevated temperature, while a higher gold concentration
makes the system more useful for lower temperatures.

The used procedure was further used to built a new calorimeter for measurements
of small single crystals. During this procedure calibration under magnetic field have
been performed by Dr. L. Malone. Results of magnetoresistance versus applied field
are shown in Fig. 3.23. The results are compared to those obtained by Brandt et al.
[20] for Cernox thin film thermometers.

Fig. 3.22 Resistance versus temperature of a germanium-gold thin-film on silcon (solid circles)
compared to a cernox CX1050 (empty circles)
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Fig. 3.23 Magnetoresistance of a germanium-gold thin film thermometer, manufactured as
described in the text, compared to a Cernox resistor as specified in Ref. [20]. While a linear field
dependence with increasing sensitivity is found for the germanium-gold film, a more complex
behaviour is found in the Cernox resistor. Courtesy of L. Malone

3.10 Rotator for High Magnetic Field

In the field of high-temperature superconductors it is often not possible to sup-
press superconductivity with superconducting magnets. In this case all experiments,
including sample screening for quantum oscillations need to be carried out at user
facilities. In order to increase productivity a rotator capable of holding four micro-
cantilever was built thereby enabling us to screen twice as many samples in a day
as before. The decision to built a rotator rather than a static probe was made as the
angle-dependence of the oscillation amplitude is not constant and hence requires to
check different field directions with respect to the crystal axis. The bottom part of the
rotator is entirely built from hysol to prevent eddy current heating (see Fig. 3.24). The
rotating ball contains three levels. The bottom level holding a Cernox thermometer
and an angle-pickup coil or Hall sensor for angle determination. The top two layers
can fit two cantilevers each. In order to access the middle layer the top level can
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Fig. 3.24 Rotator used for dHvA measurements at the LNCMI-Toulouse and the NHMFL Talla-
hassee. The rotator is constructed as swedish rotator from plastic (left panel). Inside the rotating
ball three platforms are mounted. The lowest platform holds the thermometer and angle-pickup
coil. The top two platforms can hold 2 cantilever each, as seen in the right panel

be folded back and is held in place by GE vanish. To protect the sensitive micro-
cantilever, a protection cap is screwed on the end of the probe. This cap includes a
semi-flexible plastic triangle which centers the probe and reduces vibration during
the measurement.

To determine the angle two different approaches are used depending on the used
magnetic field. For pulsed magnetic field a second pickup-coil was placed perpen-
dicular to the cantilever. The rapid change in magnetic field induces a voltage that is
proportional to the area of the pickup coil perpendicular to the applied field and the
change of field in time,

V ∝ dB

dt
sin θ. (3.22)

θ is the angle between the applied field B and the sample. The same technique is
used to determine the magnetic field strength in pulsed field systems. When plotting
the voltage of the angle-pickup coil versus the voltage of the field-pickup coil one
finds a linear correlation where the slope is related to sin θ. For the calibration of the
system, one only needs to find the maximum value of the slope.

In static magnetic field this technique is not useful as the sweep rates used are too
small to obtain a significant induced voltage. We therefore have used Hall sensors to
obtain the angle. The sensor was again placed on the rotating platform and we find
that the Hall voltage Vh is again proportional to sin θ when placed perpendicular to
the sample. As most commercial Hall sensors are used in the limit of low magnetic
fields, they are made with low carrier densities to obtain maximum sensitivity in
the range of a few milli-Tesla. In the limit of high fields up to 45T they typically
show quantum-hall-plateaus. We have therefore used a home-built alternative made
of thin-film silver-gold alloy. It had been shown that the Hall coefficient increases
when adding silver to pure gold in thin films [28].
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Fig. 3.25 Field dependence found for the Hall resistance of a silver-gold alloy, thin film at T =
0.5K in static field at the NHMFL Tallahassee. The layout of the deposited material is shown as
inset. Two active areas per substrate were performed

3.10.1 Silver-Gold Hall Sensor

For the determination of the angle in high static field we use a Hall-sensor. As
commercial available Hall-sensors have good sensitivity at low field and high high
temperature they are not suited for the use in fields up to 45T and temperatures
down to 0.3K. For this reason Hall-sensors from silver-gold alloy were produced
on glass. The mask for the deposited pattern, shown as inset in Fig. 3.25, are laser-
cut from aluminium film. Silver and gold were taken in molar ratio of 1:1. Both
materials were simultaneously deposited by evaporation using a home-built thermal
evaporator. Afterwards the mask was removed and the thin film was place in the
furnace at 200 ◦C for 20 min. In the next step the resulting pattern was contacted
using Dupont 6838 conductive paint. This was further annealed for 45 min at 200 ◦C
and then for 1h at 400 ◦C. The Hall sensor was used in high dc magnetic field at
the NHMFL Tallahassee. Data obtained for the field perpendicular to the substrate is
shown in Fig. 3.25. A Hall-coefficient of 35m�/T was found for the used substrate.

3.11 Energy-Dispersive X-Ray Spectroscopy

The determination of the exact composition is essential when probing different chem-
ical substitutions such as in BaFe2(As1−xPx )2. In the present work this has been
done in two ways, x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy
(EDX). X-ray diffraction on single crystals was used to determine the crystal struc-
ture and the lattice parameters. In the BaFe2(As1−xPx )2 series the lattice parameters
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Fig. 3.26 Typical EDX spectrum obtained on BaFe2(As1−xPx )2 with x = 0.30. Several of these
were taken at different positions on the sample surface

are sensitive to substitution of As for P [14]. As the single crystals of interest are
typically very small the diffraction pattern as already shown in Fig. 3.11c was not
sensitive enough to determine the distribution to better than ±5%. Further the com-
position obtained from the lattice parameters a and c using Ref. [14] held different
substitution levels. Hence in the quantum oscillation study of BaFe2(As1−xPx )2 XRD
was used only to estimate the composition prior to the experiment in order to find
crystals in the desired range of x . The composition of the crystal was then determined
more accurately by the linear dependence of the dHvA frequencies [29] as will be
discussed later.

For the study of Hc1 in BaFe2(As1−xPx )2 different samples to those of the dHvA
study were measured making it necessary to find another way to obtain the compo-
sition more accurately. For this we have used electron-dispersive x-ray spectroscopy
(EDX). In this technique the sample is bombarded with primary electrons which
interact with electrons on the inner shell of the atoms. Thereby created holes are
filled with electrons ‘falling’ from a higher shell. During this process a photon of
energy E = �ω with a characteristic wavelength λ = 2πc/ω is emitted. These ener-
gies/wavelength are characteristic for all elements as the allowed energy-levels in an
atom are En ∝ Z2, with the the atomic number Z . By analyzing the emitted x-ray
photon for its energy it is possible to assign it to a specific transition in a specific
atom. The count of the occurring photons for a given transition can then be used
to evaluate the ratio of different atoms in a system. Such a spectrum is shown in
Fig. 3.26 for a BaFe2(As0.7P0.3)2 sample.

Several spectra were taken for each sample at different positions on the sample
surface.
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Chapter 4
BaFe2(As1−xPx)2—A Quantum Critical
Superconductor

4.1 Introduction

Among the large variety of iron-based superconductors the BaFe2(As1−xPx )2 series
is special. The isovalent substitution allows changes in the electronic structure to be
linked to the crystal structure rather than additional doping and high quality single
crystals are available throughout the phase diagram, which allows the study of a
variety of properties with high precision.

We begin by introducing the parent compoundBaFe2As2. Upon cooling, themate-
rial undergoes a structural (from tetragonal to orthorhombic) and magnetic transition
at T = 137K [1, 2]. While for x > 0 transition-temperatures of the structural and
anti-ferromagnetic transition can be separated, in the parent compound they can not.
Shortly after its discovery, the origin of the anti-ferromagnetism was believed to be a
spin-density-wave (SDW) instability of the Fermi surface, which is caused by Fermi
surface nesting and reflected as a peak in the Lindhard dielectric response function
[3]. Further theoretical investigations using DFT calculations [4] changed this view
and suggested, that the magnetic order is driven by Hund’s rule coupling, onsite
interaction. It was shown that the energy gain for a stripe like anti-ferromagnetic
order in BaFe2As2 was achieved over a wide range of 1eV from the Fermi surface,
making the energy gain at EF a minor effect. This is supported by the band-structure
of BaFe2P2 [5], which we will discuss in more detail later. Here good nesting but
no magnetic ground state was found. Also it was discussed in Ref. [6], in the con-
text of charge density wave formation, that the nesting criteria, described in the
Peierls theory, is not a sufficient factor in systems with two or more dimensions.
DFT+DMFT studies by Yin et al. [7] as well argued the importance of the Hund’s
rule coupling on these system, but they point out that a DFT based calculation has
its limitations to predict the real system as it neglects long-wavelength fluctuations
and strongly overestimates the magnetic moment in these systems. They propose to
treat the system using DFT+DMFT, which strictly speaking also neglects long wave
length spin fluctuations [8], but it can incorporate the Hund’s rule coupling J . They
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find a correlation of the quasi particle mass with magnetic moment which is in good
agreement with experimental results. They were able to further link changes in the
effective mass to structural parameters, whose origins we will discuss in the next
section. These structural changes cause a change in the iron-iron interaction but at
the same time modify the band structure, leading to changes in the effective mass.
Yin et al. [7] further point out that the development of magnetic order not necessarily
needs nesting and can be understood in a local picture of the iron-iron interaction,
similar to the DFT prediction, in systems like KFe2As2 where the mass enhance-
ment is substantial but nesting is absent and only a small magnetic moment exists.
So we must conclude that while DFT calculations show correctly, that the formation
of magnetic order is possible without nesting, a theory including interactions, not
captured by DFT, might find nesting as an enhancing but not a causal effect.

In the systemconsidered here arsenide has been replaced byphosphorous,which is
isovalent. As the Fermi surface mainly contains iron d-orbitals which are hybridised
with the pnictogen orbitals we find that this substitution changes the overlap of
atomic orbitals but we would not expect any changes to the charge balance in or
out of the iron-pnictogen layer. In Fig. 4.1 the resulting phase diagram is shown in
comparison to that of Ba1−xKxFe2As2 for which the system becomes hole doped and
Ba(Fe1−xCox )2As2 which is electron doped.While in the case of cobalt or potassium
substitution the electron-hole-balance changes to the point where for example only
hole-pockets are observed in the case of KFe2As2 [9], in the arsenide-phosphor series
the electron-hole balance stays constant.

As can be seen in Fig. 4.1 the anti-ferromagnetic, orthorhombic phase is sup-
pressed when substituting phosphorous for arsenide and a new, superconducting,
phase emerges. The maximum critical temperature in BaFe2(As1−xPx )2 was found

Fig. 4.1 Schematic phase
diagram of
BaFe2(As1−xPx )2 and
Ba1−xKxFe2As2 as taken
from Ref. [10]. The
temperature TN and TS
represent the
anti-ferromagnetic and
structural transition
respectively
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for x = 0.3 with Tc = 30K and is located at the composition where TN extrapo-
lates to zero. By further substitution the superconducting state eventually vanishes at
x = 0.71 [1] and the BaFe2P2 end member is a paramagnetic metal.

It should be mentioned here shortly that the suppression of anti-ferromagnetism
and the appearance of superconductivity was also observed under high pressure [11–
13]. Klintberg et al. [11] showed that the achievable maximum Tc is comparable to
that of isovalent substitution. Due to the analogous behaviour, the substitution of
phosphorous for arsenide is often referred to as chemical pressure.

Besides the evolution of the ground state it is found that the temperature depen-
dence of the resistivity changes across the phase-diagram from T 2 at x =0, to T -linear
at x = 0.3 back to T 2 at x = 1 [1, 14]. As discussed in Sect. 2.8.1 this region of non-
Fermi liquid behaviour is believed to be a possible indication for quantum critical
behaviour.

4.1.1 Crystal Structure

To describe the crystal structure of BaFe2(As1−xPx )2 we will start with the body-
centred tetragonal (a = b) system, space group I4/mmm, as it can be found in
BaFe2P2, most of the superconducting compositions and temperatures above Ts in
Fig. 4.1 in the arsenic rich region. In these parts of the phase diagram the system has
tetragonal body-centred symmetry, shown in Fig. 4.2.

We will again start with BaFe2As2 and discuss changes due to the substitution
with phosphorous. As both elements are in the same column in the periodic table,
but phosphorous being one row above arsenic we can expect phosphorous to have a
smaller atomic radius but similar oxidisation state. Hence the number of electrons
per unit cell will stay constant but the lattice parameter will change as shown in
Fig. 4.3 [1]. The lattice parameter a and c shrink, as will the pnictogen height h pn

with increasing x . Due to the reduced pnictogen height the iron-pnictogen distance
becomes shorter, leading to a stronger hybridization of the atomic orbitals. This
has consequences for electronic properties. As the hybridisation of iron-d-orbitals
increases valence electrons become more de-localized leading to a larger bandwidth
and hence a reduction in effective mass. As described earlier this might be the ori-
gin for the suppression of the anti-ferromagnetic phase with increasing x . We can
possibly better understand this by the opposite approach. When increasing the pnic-
togen height the electrons becomemore localized. By following the first Hunds’s rule
they populate available states such that the magnetic moment becomes maximum.
The lowest energy configuration for this magnetic ordering in BaFe2(As1−xPx )2 is
the AFM stripe order. Further these changes in the crystal structure effect the band
structure of the system. The importance of these effects was pointed out early on by
Kuroki et al. [15], where changes in the superconducting gap structure where linked
to Fermi surface caused by modifications in the pnictogen height.

As mention previously, the ground state of the arsenic end member is different
from the so far discussed crystal structure as it experiences a structural transition to

http://dx.doi.org/10.1007/978-3-319-48646-8_2
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Barium

Pnictogen

Iron

pnictogen- 
height

ba

c

Fig. 4.2 Crystal structure of BaFe2(As1−xPx )2

Fig. 4.3 Lattice parameters a and c for the tetragonal phase of BaFe2(As1−xPx )2, as well as the
pnictogen height h pn as determined in Ref. [1]
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an orthorhombic phase (space group Fmmm). In this phase a �= b and the formation
of anti-ferromagnetism causes a doubling of the unit cell. Both effects have important
consequences for the bandstructure of the system which will be discussed in the next
section.

4.1.2 Bandstructure of BaFe2(As1−xPx)2

In this section we wish to introduce the bandstructure of BaFe2(As1−xPx )2 by dis-
cussing in more detail how it is linked to the crystal structure. We will then turn to
review results obtained prior to the present study. In contrast to the previous section
will start from the BaFe2P2 side, as our interest lies in the evolution of the non-
reconstructed Fermi surface. As pointed out in the introduction it is believed that
the nesting of the tetragonal band structure causes SDW fluctuations that lead to
superconductivity. The reconstructed Fermi surface will be briefly discussed at the
end of the section for completion.

The crystal structure being body-centred tetragonal has immediate consequences
for the band structure expected. The Brillouin-zone (BZ) for the I4/mmm space
group is shown in Fig. 4.4a. The staggered form of the BZ causes a difference in
symmetry between the�-line, four-fold symmetry, and theX-line, two-fold staggered
symmetry [16]. DFT calculations, performed using theWIEN2K package [17], show
how this affects the Fermi surface topology shown in Fig. 4.4b. While the hole-
pockets found at the center of the BZ show four-fold symmetry, the electron pockets,
at the corners of the BZ, possess a staggered two-fold symmetry. While the two-fold
staggered symmetry causes the electron-pockets to appear rather warped, dispersive
in kz , the observed dHvA frequencies show good quasi-two dimensional behaviour
as will see whenwe review the results. This can be understoodwhenwe recall what is

-Line
X-Line

c4 /

a2 /

(a) (b)

hole-pockets

electron- 
pockets

-Line

X-Line

Fig. 4.4 a Brillouin zone of the tetragonal body centred space group (after Ref. [16]). b Fermi
surface topology of BaFe2As2 as calculated in WIEN2k [17]. Symmetry axis and pocket type have
been labelled for clarity
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observed in the dHvA effect.We only observe extremal orbits but not their position or
exact shape, kz = 0 and kz = 2π/c will show the same oscillation frequency as they
have the same extremal area. The range in kz between the planes will cause additional
frequencies but the area of those will not vary strongly from those alreadymentioned.
In contrast, we find that warping of the hole pockets located in the centre of the BZ
will lead to significantly different extremal orbits at the kz = 0 and kz = 2π/c.

The variation of x and its changes in the lattice parameter has direct consequences
for the hybridization, as already mentioned. This does not just affect the bandwidth,
but also the Fermi surface topology and orbital content at the Fermi level. As the
Fermi surface is mainly caused by iron-d-orbitals their relative hybridization with
pnictogen orbitals will cause changes in the Fermi surface topology and relative
orbital weight distribution. A more detailed discussion of the effects of the crystal
structure on DFT results will be given in the context of LiFeP, see Sect. 5.4, where
we will find that increasing the unit cell, as observed in the case of reducing x (see
Fig. 4.3), the kz dispersion gets reduced. Therefore we expect the band structure of
the arsenic end member having cylindrical hole-pockets, while the phosphorous end
member shows stronger warping which is caused by a substantial contribution of dz2 -
iron-orbital at the Fermi level. The appearance of this orbital character on the Fermi
surface was discussed by Kemper et al. [18] to be a disadvantage for the formation
of an isotropic superconducting gap. Hence we would expect the formation of a
superconducting gap to become more beneficial when moving from phosphorous to
arsenic.

After these remarks lets have a look at the experimental observations prior to
the study present in this work. There had been a variety of reports on the non-
reconstructedFermi surface ofBaFe2(As1−xPx )2 in the past [5, 19, 20].Asmentioned
we will begin by looking at the end member BaFe2P2, for which a detailed study
of almost the entire Fermi-surface is available [5]. The observed Fermi-surface is
found to contain four pockets, see Fig. 4.5, for x = 1. By comparison of the observed
angle dependence of dHvA-frequencies with DFT predictions it was found that the
observed orbits result from two electron and 2 hole pockets. Significant dispersion
of the outer hole-pocket was found which reduces the nesting of the Fermi surface
at top and bottom of the BZ, in contrast to the good geometrical nesting found for
the inner hole- and electron-pocket. For the many-body mass-enhancement it was
found that λ = m∗/mb − 1 is in the range of 0.59 to 0.88. Compared to the expected
enhancement of electron-phonon interactionλ = 0.2 [21] this is a factor 3 to 4 higher.
This points to interactions that go beyond the local mean field approximation.

While the experimental values and DFT calculations can be brought in good
agreement with small rigid band shifts for BaFe2P2, the trend of Fermi surface
evolution with x can not be correctly predicted using DFT [19]. We can understand
this when considering that the substitution of arsenic for phosphorous follows a
statistical distribution on the pnictogen sites. Hence a calculation using one unit
cell by adjusting the lattice parameters can not correctly reproduce this effect. We
therefore rely on experimental data to correctly describe the evolution of the system.
The observation of hole-pockets by quantum oscillations has been limited to one
composition x = 0.64 where the observation of the minimal orbit of the outer hole-

http://dx.doi.org/10.1007/978-3-319-48646-8_5
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(b)(a)

Fig. 4.5 dHvA frequencies multiplied by the rotation angle versus angle for BaFe2P2 taken from
Ref. [5]. Experimental values (circles) and bandstructure calculations (solid lines) are shown in panel
(a). The corresponding orbits are pointed out in panel (b) where (e) represent electron pockets and
(h) hole pockets

pocket γ1 was reported [20]. Beyond this the trend of extremal orbits of the electron
pocketswas given by [19, 20]. By combining the results it was found that the extremal
orbits of the electron pockets shrink linearly when reducing x . This is accompanied
by a strong enhancement of the effective mass on the electron orbits (see Fig. 4.7b)
when entering the superconducting state and approaching optimal doping [19]. This
enhancement is on one side in agreement with the localization expected for the
increased iron-pnictogen bond length [7], on the other hand it does not follow a
linear dependency in x , but rather seems to diverge towards x = 0.3 [19].

For x < 0.3 the anti-ferromagnetic ground state causes a doubling of the unit cell
and hence a reconstruction of the Fermi surface. This reconstructed Fermi surface
has been observed for BaFe2As2 [22], by Shubnikov-de Haas (SdH) measurements,
shown in Fig. 4.6.

In the case of perfect nesting the reconstruction would lead to the formation of
a gap at the Fermi level and hence an insulator. Due to imperfection of nesting
the resulting Fermi surface contains small residual three-dimensional pockets. The
observation of quantum oscillations originating from these pockets using SdH was
only possible when applying uni-axial pressure to the system [22]. This is necessary
as the orthorhombic distortion in this phase leads to the formation of domains and
hence a reduction in mean free path to the domain size. By applying uni-axial stress
in the [110] direction a single domain can be achieved [23].
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hole-pocket electron- 
      pocket

Fig. 4.6 Reconstructed Fermi surface of BaFe2As2 as observed by SdH in Ref. [22]

4.1.3 Quantum Critical Point

Like in the cuprates or some heavy fermion compounds superconductivity in the
iron-pnictides appears in close proximity to an antiferromagnetic ordered state. As
the anti-ferromagnetic order is suppressed inBaFe2(As1−xPx )2 by chemical pressure,
one would expect to find a QCP at x = 0.3. Instead a new phase, superconductivity,
emerges. As discussed in Sect. 2.8, we are limited to the finite temperature range
to look for evidence to the quantum critical behaviour. One is the linear resistivity
in temperature as observed by Kasahara et al. [1]. A v-shaped non-Fermi liquid
regime is found, see Fig. 4.7b, which resembles that predicted by a limited life-time
of thermal excitations as described in Sect. 2.8 and illustrated in Fig. 4.7a.

Measurements of the nuclear magnetic resonance (NMR) were performed on
BaFe2(As1−xPx )2 with various P concentrations [24]. In their experiment Nakai and
coworkers measured the Knight shift K and spin-lattice relaxation rate 1/T T1. They
found that at high temperature K is almost independent of temperature and concluded
from this that the density of states is almost constant as a function of temperature.
Further they compared their results of T1 with the so called Korringa relation T T1K 2

= const. The Korringa relation should hold for all metals in the Fermi liquid regime.
Nakai et al. [24] found that this is the case for samples x = 0.64 but can not be
used at optimal doping where a Curie-Weiss behaviour is found. The Curie-Weiss
temperature θ, shown in Fig. 4.7c, is then extracted. θ crosses zero around x = 0.33
which shows that the dynamical susceptibility diverges, in the zero temperature limit
at this composition [24]. As this divergence happens simultaneously to the increase in
the superconducting critical temperature and the former observation of the effective
mass [19, 24] Nakai et al. [24] suggested that the observed enhancement of the
quasi-particle mass might be caused by enhanced AFM fluctuations.

While in most cases the normal state quasi-particles are probed to investigate
any non-Fermi liquid like behaviour it is also possible to measure superconducting
properties such as the London-penetration depth, which is linked to the quasi-particle
mass via Eq. 2.47 in the case where the superconducting carrier density is constant.
This experiment has been carried out using different probes to determine the London

http://dx.doi.org/10.1007/978-3-319-48646-8_2
http://dx.doi.org/10.1007/978-3-319-48646-8_2
http://dx.doi.org/10.1007/978-3-319-48646-8_2
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Fig. 4.7 Panel (a) shows a general phase diagram near a quantum critical point. A non-thermal
control parameter g tunes the ordered phase to a disordered phase [25]. Panel (b) shows previous
data taken on the normal state properties of BaFe2(As1−xPx )2. A linear dependence in resistivity is
observedabove the superconducting dome around x = 0.3. Also the previously reported results on
the effective mass are shown, pointing to a divergence in the effective mass at the QCP. In panel (c)
data on the Curie-Weiss temperature obtained by NMR is shown [24]. The crossing of the Curie-
Weiss temperature around x = 0.3 indicates a divergent behaviour of the susceptibility. Panel (d)
presents data on the London penetration depth. A strong peak at the QCP is observed by different
techniques. Panel (b) and (c) are taken form Ref. [14]

penetrationdepthλL [14]. Theydiscovered a strongpeak inλ2
L in the zero temperature

limit. These measurements therefore suggested the existence of a QCP underneath
the superconducting dome at x = 0.3, directly influencing the superconducting
properties in the T = 0 limit.

4.2 Quasi-particle Mass Enhancement

The observation of a strong peak in λL [14] has motivated a further investigation of
the effective mass by dHvA close to the quantum critical point of BaFe2(As1−xPx )2.
One can see in Fig. 4.7d that a significant part of the enhancement is within 0.1
of xc = 0.3. As most of the previous data was taken on samples with Tc up to
15K the prediction of a diverging mass relied on the data point at x = 0.4 for the
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outer electron pocket. In order to improve our understanding of the evolution of the
effectivemass inBaFe2(As1−xPx )2 more than 40 samplesweremeasured in static and
pulsed magnetic fields up to 70T using micro-cantilever. It was possible to observe
quantum oscillation using the dHvA effect in samples with substitutions ranging
from x = 0.38 to x = 0.76 (see Fig. 4.11), thereby adding significant detail to
the evolution of the mass enhancement. Further oscillations originating from the the
inner electron pockets were observed, which were strong enough to follow their mass
evolution far into the superconducting dome. However as the signal from quantum
oscillations is fading away when approaching the QCP due to an enhanced upper
critical field Hc2 and a shorter mean free path, we will start the discussion of the
results on the phosphorous rich end and work our way towards the QCP.

4.2.1 On the Edge of Superconductivity

The superconducting critical temperature in BaFe2(As1−xPx )2 goes to zero temper-
ature at x = 0.71 [1]. Therefore we have started our investigation just outside of
this range where high quality single crystals are available. In Fig. 4.8 the oscilla-
tory part of the torque signal from a crystal with x = 0.76 at T = 0.5K in the field
range of 18 to 42T is shown. The data was taken at the NHMFL Tallahassee using a
helium-3 cryostat inside the Hybrid magnet. A smooth background was subtracted
from the data to account for the paramagnetic response of the sample. In the right
panel of Fig. 4.8 the Fast Fourier Transformation (FFT) of the data in the range of 24
to 42T is shown. Two dominant frequencies originating from the inner (α) and outer
(β) electron pockets can be identified in the frequency spectrum by comparing the

Fig. 4.8 Torque versus magnetic field for a sample of BaFe2(As1−xPx )2 with x = 0.76. The left
panel shows the data after subtraction of a smooth background. The right hand panels show the
FFT in the range of 24 to 42T (top) and a zoomed view of the low peaks (bottom)
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(a) (b) (c)

Fig. 4.9 Amplitude versus temperature for the γ-orbit (a), the α-orbit (b) and the β-orbit (c). Data
was taken in a helium-3 cryostat at the NHMFL-Tallahassee. The FFTs were perform on a field
window of 20 to 42T after subtracting a smooth background. Solid lines are fits to of the temperature
damping term RT contained in the LK-formula

angular dependence of the frequency to that found in DFT calculations. By increas-
ing the scale we find further peaks well above the noise level. The first, we believe,
originates from the minimal orbit of the outer hole-pocket (γ), as it shows very sim-
ilar angle dependence and frequency to γ1 found in the end member BaFe2P2 [5].
The second peak is identified as torque interaction, explained earlier in Sect. 3.8.1,
and the third represents the second harmonic of the most dominant frequency β.
The amplitude of the first harmonics were measured at different temperatures. By
fitting the temperature damping term RT of the LK-formula (Eq. 2.27), as shown in
Fig. 4.9, the effective masses of the individual Fermi surface sheets were extracted.
We obtainedmγ = (2.6±0.4)me for the outer hole pocket andmα,β = (1.8±0.1)me

for the electron sheets.. These values are comparable to those found for the endmem-
ber BaFe2P2 [5]. The determination of the mean free path of each individual orbit
proves to be difficult for systems with multiple frequencies. In order to disentangle
the contributions from different extremal oscillation frequencies, we need to separate
them by filtering in Fourier space. In Fig. 4.10 the outline of the procedure is shown,
which shall now be discussed in more detail. Starting from the FFT of the oscillatory
component in Fig. 4.10a the data is multiplied by a filter-function

F = 1

2

[
tanh

(
f − fmin

s

)
− tanh

(
f − fmax

s

)]
, (4.1)

with the lower and upper boundary of the filter fmin and fmax and the smooth-
ing parameter s (shown in Fig. 4.10b dash-dotted line). The benefit of the chosen
filter-window over a rectangular shape lays in the side-effects. These will affect the
amplitude in a field range at the beginning and the end of the chosen window that
is the smaller the larger the transition range from 1 to 0 in the filter-window is. The

http://dx.doi.org/10.1007/978-3-319-48646-8_3
http://dx.doi.org/10.1007/978-3-319-48646-8_2
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(a)

(b)

(d)

(c)

Fig. 4.10 Procedure used to determineDingle-damping factor in LK formula frommulti-frequency
spectrum. a FFT taken on a sample with x = 0.76 at T = 0.3K in the field range of 20 to 40T.
b FFT of unfiltered (dashed) and filtered data (solid). c Inverse FFT of the filtered data. The lines
present fits to the LK formula. d Logarithm of the Amplitude obtained from fit in (c) versus inverse
field. The solid line represents a linear fit to the data. See text for more details
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folded data is then transferred using the inverse FFT. The result is shown in Fig. 4.10c
together with fits of the LK-formula. Those fits are performed over typically ‘one-
and-a-half’ periods and repeated in steps of one period, giving the result shown in
Fig. 4.10d. Here it should be mentioned that data at low and high fields are left out as
they are affected by the shape of the used filter window. As mentioned the amount of
field unaffected depends on the smoothing factor s. Plotting the data as the logarithm
of the amplitude versus the inverse field represents the data best in accordance to the
dingle-damping term (Eq. 2.29). The increase in oscillation amplitude in field can
now be evaluated by a linear fit to the data. Using this procedure rather than fitting
an exponential term to the amplitude versus field has the advantage that the result is
less influenced by remaining beats in the signal due to closely spaced frequencies.
The slope α of the linear fit is related to the mean free path of the extremal orbit

l = 1140
√
F

α
. (4.2)

We obtain lα = 66.5nm, lβ = 55.7nm and lγ = 27.4nm. Compared to the mean free
paths observed in Ref. [5] those values are significantly reduced. This is consistent
with the observation of Shishido et al. [19] where a similar reduction was observed
with reduced x . While the mean free path is mainly a measure of sample quality, the
observation of a reduction in the mean free path upon approaching the highest Tc in a
variety of samples suggests an intrinsic property of the system. For substitution from
x = 1 to x = 0.5 this is expected as the statistical distribution of arsenic and phosphor
atoms will have similar effect as impurities. For x < 0.5 the close proximity to the
magnetically order, orthorhombic state can cause a strong fluctuation between the
reconstructed and non reconstructed Fermi surface in parts of the sample, which
leads to a frequency distribution and will hence be seen as low mean free path. In
the case of a strong increase of the oscillation amplitude in magnetic field due to
a short mean free path and a wide field window used for the FFT, the result of the
effective mass can be influenced by the Dingle term. In order to rule this out the
obtained parameter are used to simulate the result and check for self consistency. In
the present case no significant deviations were found, but we will come back to this
and have a look at an alternative procedure when discussing LiFeAs.

4.2.2 Electron Pockets Inside the Superconducting Dome

We will now turn to the data obtained on superconducting samples (see Fig. 4.11).
Following the same procedure as previously we have determined the effective mass
and mean free path of the samples. We were able to observe quantum oscillations
originating from the outer electron pocket for samples with x = 0.38 to x = 0.65.
The data of amplitude versus temperature and corresponding fits of the LK-formula
are shown in Fig. 4.12. Frequency dependences on applied field direction of the
β-orbits were determined for all samples around B ‖ c from the angular dependence

http://dx.doi.org/10.1007/978-3-319-48646-8_2
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Fig. 4.11 Torque signal for different compositions of BaFe2(As1−xPx )2 with superconducting
ground state. The left panels show the raw data obtained in pulsed magnetic field at the LNCMI-
Toulouse. A smooth background has been removed to obtain the oscillatory part of the signal shown
in the right panels. The relevant phosphor concentration x has been indicated for each row

of the oscillation frequency. From this theminimum frequency Fβ
0 was extracted by a

polynomial fit. The linear decrease of pocket size, found inRef. [19], was then used to
determined the sample composition.Also the superconducting transition temperature
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Fig. 4.12 Temperature dependence of the FFT amplitude of the dHvA signal for the β orbits in
several BaFe2(As1−xPx )2 samples with different x . The lines are fits to the temperature dependent
part of the LK formula. The respective x and field range used are indicated in the plots

wasmeasured using a tunnel-diode oscillator. Thiswas used to check the composition
values x by comparison to previous reports [1]. The obtained transitions for 2 samples
with x = 0.65 and 0.40 are shown in Fig. 4.13.

As Tc rises in thesematerials so does the upper critical field Hc2. For x = 0.3, which
shows the highest superconducting transition temperature Tc = 30K, we estimated
Hc2 by determining the irreversibility field (see Sect. 4.3 for more information) to be
50T. As these fields can currently only be reached by using pulsed magnetic field,
the major part of this study has been carried out at the LNCMI-Toulouse. During
the fast increase in magnetic field the sample can experience heating due to eddy
currents induced by the large dB/dt . In order to rule out any systematic error in the
presented data, the sample with the highest mass determined in pulsed field (x = 0.4)
was remeasured at the NHMFL Tallahassee using the hybrid magnet up to 42T. The
masses obtained in static and pulsed magnetic fields were in good agreement. As all
other samples were of similar shape and size we can therefore rule out any effect of
eddy current heating on the obtained results.

In Fig. 4.14a the results for the outer electron pocket, β-orbit, are shown as
enhancement over the bare electron mass. The data is superimposed on the
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Fig. 4.13 Superconducting transition for samples with x = 0.65 and x = 0.4. A tunnel diode
oscillator was used. The shift of resonance frequency in the tank circuit is plotted vs temperature

(a) (b)

Fig. 4.14 Panel (a) shows the dependence of the measured quasiparticle mass from dHvA on x for
the β orbits. The data obtained in the present study (solid dots) is in good agreement with previous
reports [19] (open circles). In panel (b) the renormalization of the measures quasiparticle mass over
the bandmass is plotted for β orbit (solid dots), α orbit (solid squares) and γ orbit (triangles). The
dashed line marks the edge of the superconducting dome [1]. Data at x = 1 in this figure was taken
from Ref. [5]

previous results of Shishido et al. [19], which shows good agreement. The solid
line presents a fit to the data using y = 1− a ln(x − xc) as expected for the effective
mass close to a QCP [26]. We have fixed the critical composition xc = 0.3, which was
found in London penetration depth [14]. The factor a = 0.91 represents a measure
of the critical exponent. As we do not have data close enough to the quantum critical
point an exact determination is not possible. The agreement of the data with the fit
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shows that the effective mass does follow the expectations for a quantum critical
point and hence supports this scenario.

4.2.2.1 Comparison to DFT

Bandstructure calculations have been performed using the WIEN2K package [17].
The observed shift in frequency as a function of x for the β and α orbits are not
reproduced in band structure calculations as pointed out by Shishido et al. [19].
As rigid band shifts are required to bring the DFT calculation into agreement with
experimental results, we decided to use the same band structure calculation as starting
point for these rigid band shifts. This is further justified, as the evolution of the
electron pockets in DFT (see Ref. [19]) is rather smooth. A significant change in
the band structure predicted by DFT happens on the hole pockets where a third hole
pocket is found in calculations for x = 0.3. Since the only composition at which a
hole pocket is observed in this study is x = 0.76 we used the lattice parameter of this
compound a = b = 3.8693 Å and c = 12.5691 Å and the pnictogen height of h pn =
1.2489 Å for the DFT calculations. The space group I4/mmm of BaFe2P2 was used
as the crystals possess body-centred tetragonal crystal structure.

In order to perform the rigid band shifts the first step was to calculate the depen-
dence of dHvA frequencies of energy shifts F(EF − �E) to obtain the necessary
shift �E(x). Second the band masses and density of states (DOS) for the individ-
ual pockets were calculated. Results are presented in Tables4.1, 4.2 and 4.3. The
enhancement of the individual orbits over the band mass are plotted in Fig. 4.14b,
also including data from Ref. [5] for x = 1. The dashed line marks the onset of super-
conductivity as determined in Ref. [1]. One can clearly see the an enhancement upon
entering the superconducting dome for the β-orbit. We were able to trace the mass
evolution of the inner electron pocket inside the superconducting dome as well. This,
within error bars, shows the same behaviour as that of the outer electron pockets.

Table 4.1 Parameter obtained by experiment and band structure calculation of BaFe2(As1−xPx )2
for the extremal orbitγ on theouter hole pocket.mb andγb are taken frombrandstructure calculations
all other values are obtained from experiment

Name x F0 �E mb m∗ λ γb γ

Arnold [5] 1.00 812 62 –1.35 2.3 0.70 0.885 1.51

No38 0.76 750 67 1.35 2.6 0.93 –0.885 1.70

Analytis [20] 0.63 450 –92 1.34 4.5 2.36 0.767 2.58

T meV me me mJ K−2mol−1 mJ K−2mol−1
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Table 4.2 Parameter obtained by experiment and band structure calculation of BaFe2(As1−xPx )2
for the extremal orbit α on the inner electron pocket. mb and γb are taken from brandstructure
calculations all other values are obtained from experiment

Name x F0 �E mb m∗ λ γb γ

Arnold [5] 1.00 1169 –57 0.9 1.6 0.78 0.87 1.54

No38 0.76 1000 –77 0.9 1.8 1.00 0.84 1.67

No33 0.65 1043 –71 0.9 1.94 1.16 0.85 1.83

Analytis [20] 0.63 1060 –70 1.0 2.3 1.23 0.85 1.90

No7 0.55 860 –93 0.9 2.1 1.33 0.83 1.93

No1 0.48 840 –96 0.9 2.2 1.44 0.82 2.01

T meV me me mJ K−2mol−1 mJ K−2mol−1

Table 4.3 Parameter obtained by experiment and band structure calculation of BaFe2(As1−xPx )2
for the extremal orbit β on the outer electron pocket. mb and γb are taken from brandstructure
calculations all other values are obtained from experiment

Name x F0 �E mb m∗ λ γb γ

Arnold [5] 1.00 2277 –20 0.92 1.54 0.67 0.91 1.52

No38 0.76 2000 –50 0.94 1.8 0.87 0.89 1.66

No33 0.65 1869 –67 0.91 1.9 1.06 0.88 1.81

Analytis [20] 0.63 1800 –75 0.96 2.1 1.19 0.87 1.91

No7 0.55 1758 –80 0.92 2.2 1.39 0.87 2.08

No25 0.51 1712 –86 0.92 2.4 1.61 0.87 2.26

No1 0.48 1677 –91 0.91 2.5 1.69 0.86 2.33

No23 0.43 1619 –98 0.89 2.8 2.15 0.86 2.71

No27 0.40 1585 –102 0.90 3.0 2.33 0.86 2.87

No34 0.40 1780 –102 0.90 3.0 2.33 0.86 2.87

Talla 0.38 1562 –105 0.90 3.6 2.95 0.86 3.40

T meV me me mJ K−2mol−1 mJ K−2mol−1

4.2.3 Evolution of Fermi Surface Topology

As mentioned above the composition of the measured samples was determined by
the minimal frequency Fβ

0 of the beta orbits, using the linear dependency found in
Ref. [19]. The good linear dependency shown in Fig. 4.16 is hence a result of this
procedure. In addition to the dHvA frequencies found in bulk measurements (solid
symbols) the results from ARPES measurements in x = 0.38 [27], see Fig. 4.15,
are shown (open symbols). We find the frequencies extracted from the extremal
orbits of the electron pockets in good agreement with the fits to the dHvA data,
shown as dashed lines. Here we make the assumption that the obtained hole pocket
topologies in Ref. [27] is be in similarly good agreement with thebulk Fermi surface.
However we should point out that the hole pocket mean-free path was more affected
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Fig. 4.15 ARPES data obtained by Yoshida et al. [27]

by substitution, which suggests that the hole pockets are more susceptible to small
changes in the lattice potential. We use this data in combination with dHvA by
Analytis et al. [20] and Arnold et al. [5] to investigate the evolution of the Fermi
surface topology.

While DFT calculation shown in Fig. 4.15d, e predict three hole pockets for
x = 0.4 and x = 0.6 the data shown in Fig. 4.15a, c only allows for the identifi-
cation of two of those bands. The extremal orbit areas, given in Ref. [27], were
transferred to the expected frequencies using the Onsager relation (Eq. 2.22). For
clarity the identified orbits where labelled in Fig. 4.15c according to the labelling
found in Ref. [5] and is also used in this work. We will in the following focus on the
orbits that have previously been observed in bulk dHvA measurements as we can
only predict a trend for those.

In Fig. 4.16a the interpretation of Fermi surface evolution as found in Ref. [5, 20,
28] is shown. In those reports the authors state that the Fermi surface experiences an

http://dx.doi.org/10.1007/978-3-319-48646-8_2
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(a) (b)

Fig. 4.16 dHvA frequency versus x for β orbits (squares), α orbits (triangles top) and γ orbits
(triangles bottom). Open symbols are taken from data taken by Yoshida et al. [27] using ARPES and
data at x = 0.63 was taken by Analytis et al. [20] and Arnold et al. [5] for x = 1.0 using dHvA. Panel
(a) shows the identified orbits as found in Ref. [20, 28] while panel (b) contains the interpretation
of the change in extremal orbits present in this work. Dashed lines are fits to the data selected
according to the respective interpretation. The inner hole pockets which could not be observed in
this work are shown as diamonds

overall shrinkage with reducing x . In contrast our interpretation of the data suggests a
different scenario for the Fermi surface evolution with x shown in Fig. 4.16b. Instead
of a monotonic decrease of the outer hole pocket the extremal orbit γ1 stays almost
constant while the large orbit γ2, not shown in the figure, at kz = 2π/c reduces in
size from Fγ2

0 ≈ 7000T at x = 1 [5] to Fγ2
0 ≈ 4390T at x = 0.38 [27]. While this still

represents a significant kz dispersion, the reduction in extremal orbit size by almost
40% shows the trend towards a quasi two dimensional Fermi surface topology as
argued in the introduction. The decrease in kz dispersion is accompanied by a loss
in dz2 orbital character which was suggested to be beneficial for a SDW mediated
superconducting pairing scenario [18].

A further consequence of this scenario is that the observed orbit γ in Ref. [20]
does not originate from the outer but rather from the inner hole pocket. In the cur-
rent model we would suggest to assign this orbit to δ1, which was missing in the
study of the end member BaFe2P2 [5]. We believe that the trend towards more cylin-
drical Fermi surface sheets would cause this orbit to show a similar angle depen-
dence of the frequency as observed for γ1 at x = 1. As the measured composition of
x = 0.63 in Ref. [20] is close to the point where the interpolation in Fig. 4.16b sug-
gests the bands α and γ1 to have similar F0, the assigned orbit α might therefore
contain contributions from different orbits.

The small extremal orbit assigned to δ1 in Fig. 4.15c seems to have a rather low
value as compared to that found by Analytis et al. [20] and would therefore not
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be captured by our interpretation. However as the data in Ref. [27] is taken by a
surface sensitive technique we need to point out that this could cause variations
to the chemical potential. While the electron pockets, as we argued, are in good
agreement, the bands most affected by such a change are those that are close to
localization as it is the case for the δ1 orbit. Therefore an underestimation of the
orbital size of δ1 can not be ruled out, which would bring it in good agreement with
the proposed evolution of the Fermi surface topology.

4.2.4 Discussion

In summary quantum oscillations originating from the electron pockets in
BaFe2(As1−xPx )2 were measured over a large part of the phase diagram. By mea-
suring multiple samples in the range of x = 0.38 to 0.76 a smooth upturn of the
effective mass was observed. This upturn was fitted using the logarithmic divergence
suggested in Ref. [26, 29] to describe the evolution of the effective mass close to
a quantum critical point. However as we were not able to observe quantum oscilla-
tions close enough to the critical composition xc = 0.3 we can only show a qualitative
agreement with the proposed form while the extraction of the critical exponent was
not possible.

The presented study of themass enhancement was further refined by a study of the
heat capacity [30]. In this study the jump of C(T ) at the superconducting transition
temperature Tc was used to determine the Sommerfeld-coefficient γ. As γ depends
on the density of states at the Fermi level the same way as the effective mass, we can
use γ/γb = m∗/mb. In Fig. 4.17 a comparison of the data from dHvA, heat capacity

Fig. 4.17 Renormalization
of the quasiparticle mass
over the bandmass as derived
from heat capacity [30],
dHvA (presented in this
work) and microwave
magnetic penetration depth
measurements [14]. The
dashed line presents a quide
to the eye
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and penetration depth is shown. The band structure values for the enhancement of
the heat capacity and penetration depth are based on the results found in this work.
One can see that the two-fold enhancement measured by quantum oscillations is
only the beginning of the divergent behaviour. The quantitative agreement between
the different probes shows that the peak in the London penetration depth is caused
by a strong increase in the normal state quasi particle mass. Here the assumption
was made that all pockets contribute equally to the heat capacity data [30]. This is
justified with the results obtained by dHvA for the electron pockets and also for the
outer hole-pocket γ, where the renormalization was found to agree within errors.
Further it should be mentioned that as dHvA measures the effective mass as an
average of the observed extremal orbit and heat capacity measures the enhancement
as sum over all Fermi surface sheets, one can not rule out hot spots, local parts of the
Fermi surface with higher enhancements. This might be of importance taking into
account that the gap-structure found to contain nodes [31]. From this argument the
interaction potential in the expression for the gap in the BCS-theory (Eq. 2.59) will
depend on k and hence the quasi-particle mass might depend on k.

Recent theoretical work based on a two-band model found that the best fit of
the heat capacity data is obtained by including an additional term to the logarithmic
divergence [32]. In their work the authors fitted the data using

�C

Tc
= α + β ln(x − xc) + γ(x − xc)

−1. (4.3)

While the first two terms correspond to the form we used to fit the effective mass,
showing a strong increase in the quasi particle mass due to quantum critical fluctu-
ations, the third term incorporates the thermal fluctuations of the SDW order. The
authors inRef. [32] suggest from the resulting fit close to xc that the SDWfluctuations
become more important than the quantum fluctuation, which could explain the slight
difference in the diverging behaviour between dHvA and heat capacity data shown
in Fig. 4.17. However from the present data a small field dependence of the effective
mass close to the QCP can not be ruled out to cause the difference in the obtained
values of m∗/mb using dHvA and heat capacity results. As data close to xc is not
available from dHvA experiments the precise determination of the contribution of
the two functional forms is so far not possible. This was also pointed out by Analytis
et al. [33], where resistivity measurements were performed to obtain the electronic
behaviour close to the quantum critical point. They pointed out that for xc = 0.3
their resulting coefficient β was in good agreement with the results presented here.
However they found a somewhat lower value when using xc = 0.32 which also held
a good agreement with their obtained data. This shows that while we can confirm
the trend of the quasi particle mass to be in good agreement with that predicted for
a QCP the precise determination of the critical exponent, characterizing the phase
transition, would require even more detailed studies.

By combining data of the extremal orbits on the Fermi surface obtained in this
work with those found previously [5, 20, 27] we argued that the Fermi surface
topology become better nested and less dispersive in kz when approaching x = 0.3.

http://dx.doi.org/10.1007/978-3-319-48646-8_2
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The presented data is in good agreement with the calculations by Yin et al. [7]
presented in the introduction. When reducing x the overall size of the Fermi surface
shrinks as best seen by the electron pockets, which leads to a higher localization
as also seen by the divergence in the effective mass. This makes the system more
susceptible to critical long-wave length fluctuation that can cause superconductivity
but further lead to magnetic order. While the system even at x = 0.3 is not perfectly
nested as shown in Fig. 4.16b, the trend towards nesting might help stabilise the
anti-ferromagnetic order as proposed in Ref. [7].

4.3 Anomalous Behaviour of the Critical Fields

The work which will be presented in this section was motivated by previous results
on the London penetration depth [14] and the quasiparticlemass enhancement [30] in
BaFe2(As1−xPx )2. We will start by presenting the data obtained on the upper critical
field, before we show and discuss data on the lower critical field.

4.3.1 Upper Critical Field Hc2

The upper critical field in single crystals of BaFe2(As1−xPx )2 was determined by
two different techniques, heat capacity at Tc and torque magnetometry at low T . The
upper critical field, for orbital limiting, is given in the Ginzburg-Landau theory as

Hc2 = φ0

2πμ0ξ
2
GL

. (4.4)

The coherence length ξGL can typically be approximated with the BCS-value [34]

ξ = �vF

π�
, (4.5)

which leads to the expression Hc2 ∝ (m∗�/kF )2. As the variation of Tc close to xc
is rather small [1], as well as the change of kF which we will assume to be roughly
constant in this range, we see that the upper critical field Hc2 should vary as m∗2.

The upper critical field Hc2(T = 0) can be evaluated in different ways. First
we have used data taken by P. Walmsley using heat capacity measurements at static
field close to Tc (see Fig. 4.18). The obtained slope dHc2/dT , shown in Fig. 4.19, can
then be extrapolated to zero temperature using the Werthamer-Helfand-Hohenberg
(WHH) relation [35]

Hc2(0) = −0.73

(
dHc2

dT

)
Tc

Tc. (4.6)
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Fig. 4.18 Heat capacity �C/T as a function of temperature for a sample of BaFe2(As1−xPx )2
with x = 0.35. Temperature sweeps were performed at various constant magnetic fields. A smooth
background has been subtracted to account for the phonon contribution to the specific heat. Courtesy
of P. Walmsley

Fig. 4.19 Upper critical
field of BaFe2(As1−xPx )2 as
function of temperature
normalized to Tc for different
concentration x . The solid
lines represent linear fits to
the data. The data is based on
heat capacity measurements
taken by P. Walmsley

As the data obtained by this technique represent the critical field at T = 0 by extrap-
olation, is it desired to compare these values with data taken at low temperatures. For
this we use torque magnetometry. Although using this technique we determine the
irreversibility field Hirr , which does not directly correspond to Hc2, for systems with
low anisotropy, as it is the case in BaFe2(As1−xPx )2 [36], it can be used as a good
estimate. Hirr was determined from the data taking the difference of up and the down
sweep as shown in Fig. 4.20. In the normal state the magnetization for a paramagnet
gives the same result independent of dH /dt , while in the superconducting state a
hysteresis opens. The onset of the hysteresis is identified as Hirr .
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(a) (b)

Fig. 4.20 Magnetic torque taken on a sample of BaFe2(As1−xPx )2 with x = 0.4 at T = 1.5K. Panel
a raw data taken in pulsed magnetic field up to 58T at an angle of 14◦. The sweep direction are
indicated by arrows. Panel b difference between up and down sweep. The square root has been
plotted as the signal starts to deviate smoothly. The determined irreversible field was indicated

For both experiments the field direction H ‖ c was chosen. For selected samples
the results of Hc2 at Tc and the low temperature data are compared in Fig. 4.21. The
extrapolation of the heat capacity data, using the WHH theory, is shown as dashed
line, which is in good agreement with the torque magnetometry data at low temper-
atures. It should be mentioned that the measured samples in both cases where not
identical. While the sample composition in the heat capacity study was determined
by x-ray diffraction [30], the composition in torque magnetometry was determined
by the observed frequency of the β-orbit, as discussed in the previous section. Also
we have assumed the WHH theory in the dirty limit as we can not make direct
statements of their mean free path. Samples of the torque magnetometry study were
identical, down to x = 0.38, to those where quantum oscillations were observed. For
these crystals we know that the superconducting coherence length ξ is not limited
by the mean free path l and hence we could assume the clean limit which would
increase the values obtained fromWHH at T = 0 for even better agreement between
values obtained from �C and τ .

The results for all measured compositions in the low temperature limit from heat
capacity data and the torque magnetometry are combined in the inset in Fig. 4.22.

While so far we have only discussed the expression for Hc2 in the frame work
of GL theory this only accounts for orbital limiting effects while neglecting that the
energy difference due to Zeeman splitting in field is unfavourable for the formation
of singlet cooper pairs. The critical field that leads to the pair breaking due to the
Zeeman effect is known as Pauli-limiting field H p given by [37, 38]
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Fig. 4.21 Upper critical
field Hc2 of
BaFe2(As1−xPx )2 as
determined by heat capacity
measurements (squares,
empty circles) and from
torque magnetometry (solid
circles). The data is shown
for different compositions
x = 0.5, x = 0.38 and
x = 0.3. As different
samples were used the
samples where matched by
their superconducting critical
temperature. The dashed
lines are predicted behaviour
by the Werthamer-Helfand-
Hohenberg theory (WHH)
[35]. Heat capacity
measurements were taken by
P. Walmsley and L. Malone

H p
c2(0) = χ−0.5�N (EF ), (4.7)

with the normal state susceptibility χ, density of states at the Fermi level N (EF )

and the superconducting gap �. Comparing the temperature dependence of the two
pair breaking fields we find H p

c2(T ) ∝ �(T )/�(0)χ−0.5 for the Pauli limiting field
and Horb

c2 (T ) ∝ (�(T )/�(0))2m∗2 for the orbital limiting field as described in BCS
theory. Therefore we see that for temperatures close to Tc Horb

c2 < H p
c2. Only at low

temperatures where� becomes approximately temperature independent both values
can reach similar values. The dominating pair breaking mechanism at low tempera-
tures then depends on the electron-phonon coupling which effects the effective mass
m∗ but not the susceptibility χ [39]. Since in our case Hc2(0) as determined close
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Fig. 4.22 Upper critical field Hc2 of BaFe2(As1−xPx )2 as function of phosphorous concentration
x . The dots show the data obtained by torque measurements while the square show the values of
Hc2 estimated from the heat capacity data close to Tc. The main panel shows

√
μ0Hc2/Tc which is

expected to be proportional to m∗ as described in the text

to Tc and at low temperatures show good agreement we can conclude that both are
caused by the same mechanism letting us rule out a Pauli limiting mechanism at low
temperatures that could cause a cut off of the critical divergence.

By plotting the data in the from
√

μ0Hc2/Tc we expect to find a behaviour that
is proportional to the quasi particle mass enhancement as argued in the beginning.
Instead we found a linear change over the main part of the superconducting region.
From this we suggest that the change in the upper critical field is mainly explained
by the increase in Tc rather than the dominant change in the quasi particle mass as
can be seen in Fig. 4.23.

This being in contrast to the expectation by GL theory we want to point out that
similar results were found in CeRhIn5 [40] shown in Fig. 4.24. In this compound
a QCP appears under pressure and a clear peak is observed in the effective mass
at this point. The estimate of the effective mass from Hc2 however shows a similar
behaviour as found in the present study of BaFe2(As1−xPx )2. A possible explanation
for the missing peak in Hc2 could be given by a low mean free path that limits the
upper critical field close to xc, which we had already ruled out. Another scenario
that could explain the observation, would be a field dependent effective mass. In
the case that the strong divergence of the quasi particle mass would be suppressed
in field we could expect an upper critical field Hc2 that would not be affected by
the QCP. However the mass enhancement by a factor 2 from x = 0.7 to 0.38, as
studied by dHvA, as well as low temperature transport studies by Analytis et al.
[33] were performed in fields well above Hc2, observing a similar enhancement in
quasi particle mass. While the results in both experiments where slightly reduced
from those in zero-field heat capacity studies, this difference can not account for the
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Fig. 4.23 The effective mass of BaFe2(As1−xPx )2 as function of x close to the QCP as derived
from the upper critical field Hc2 (squares, circles) and from the heat capacity measurements in
Ref. [30]. The values were normalized to those found at x = 0.3 for better comparison

Fig. 4.24 The effective
mass of CeRhIn5 as derived
from dHvA, Hc2 and the A
coefficient in transport. The
conversions m ∝ √

Hc2/Tc
and m ∝ √

A were used. The
figure was taken from
Ref. [40]

strong deviation from the expected values in Hc2. Also, we have determined Hc2

close to Tc which should be directly affected disregarding a possible cut off at low
temperatures and high magnetic fields. Last but not least the fact that we are here
dealing with a multi-band system might cause additional complications. In the well
understood multi-band system MgB2 the upper critical field is entirely determined
by the σ-band at T = 0, as the superconducting gap � is largest in this band. As
shown above Hc2 ∝ �2m2, from which we conclude the possibility to construct a
gap � which would cancel the divergence of m. However as �, according to BCS
theory, depends on the density of states at the Fermi level and the interactions in
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Fig. 4.25 Temperature dependence of the upper critical field Hc2 in the single and multi band
scenarios. The different models are scaled to posses the same slope dHc2/dT at Tc. After Ref.
[35, 41]

the system, as does m in the framework of Fermi liquid theory, this scenario is not
possible.

We will further consider the possibility of multi band scenarios based on calcula-
tion byGurevich [41]. The numerical results obtained for the temperature dependence
in the s++ and s± case are shown in Fig. 4.25. The results are normalized to posses
the same slope dHc2/dT at Tc. We find that the extrapolated values for Hc2(0) devi-
ate quite dramatically from each other. It was shown in Ref. [41], that in the case of
a multi band scenario Hc2 follows the expression

Hc2(T ) ∝ Tc(Tc − T )

v2
1 + v2

2

. (4.8)

From this one could argue that in the presence of a light band, with v1 	 v2, which
is not enhance, the expected peak in the upper critical field would be absent as Hc2

is then dominated by v2. However the strong peak in the London penetration depth
[14], which probes light carriers, was found to be in good agreement with heavy
quasi particles probed by specific heat [30], we can conclude that in the case of
BaFe2(As1−xPx )2 v1 ≈ v2. Due to this argument the expression takes the form as
that of a single band model. However as the model in Ref. [41] was based on 2
identical spherical Fermi surface sheets, a more sophisticated model including the
quasi two-dimensional topology of the Fermi surface and anisotropy of vF could
change these predictions, but has so far not been done.



110 4 BaFe2(As1−xPx )2—A Quantum …

4.3.2 Lower Critical Field Hc1

The lower critical field of a type two superconductor is connected to the London
penetration depth in the GL-theory by

μ0Hc1 = φ0

4πλ2
ln

(
κ + 1

2

)
, (4.9)

with the Ginzburg-Landau parameter κ = λ/ξGL which is assumed to be large. The
factor 1/2 is a correction term for the vortex core contribution that is neglected in the
original derivation. In the high-temperature superconductors such as
BaFe2(As1−xPx )2 we find κ ≈ 100 [14] and hence the above formula should be
valid. From the peak in the penetration depth [14] we would expect to find a dip in
Hc1 close to the quantum critical point.

We have determined the lower critical field using micro-hall arrays. Those allow
us to determine the field of first flux penetration Hp at the center and at the edge
of the sample simultaneously as illustrated in Fig. 4.26. This method is important
as to rule out an overestimation of the lower critical field due to surface pinning
or surface barrier effects. In the case where surface pinning can be neglected the
vortices entering will move straight to the center of the sample and both sensors will
detect a change in effective field in the sensor area at the same applied field.

Also we would expect a hysteresis upon entering and leaving the sample in the
case of pinning. To check that this is not the case we have compared up and down
sweeps of the applied magnetic field and determined the critical fields respectively.
Figure4.26 shows data taken on a sample with x = 0.38 and at T = 18K. One

Fig. 4.26 Panel (a) shows the magnetic flux density measured by the micro Hall array versus the
applied field Happ for BaFe2(As1−xPx )2 with x = 0.38 at T = 18K. Different positions at the edge
and the center of the crystal are shown (see schematic inset). In panel (b) the remanent field after
subtraction of a linear fit to the low field data is plotted versus the applied field
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can see that both criteria are fulfilled. Throughout the experiment we have used
this method to check for contributions of surface pinning and have only considered
samples were the above mentioned criteria were obeyed. By comparing the data
taken for the lower critical field with data taken on the same sample using heat
capacity, we found a correlation between the superconducting transition width and
whether or not a sample fulfilled the criteria. A threshold of�Tc ≤1Kwas found for
the used samples. As measurements of heat capacity were less time consuming we
then started by screening a variety of samples selecting those below the threshold for
magnetisationmeasurements. Best results were found for samples where the edges of
the sample were cleaved off. A typical transition found is shown in Fig. 4.27. The size
of the heat capacity anomaly in�C/Tc was used as additional quality and consistency
check, and was found to be in good agreement with previous measurements [30], as
shown in Fig. 4.28.

The critical fields of the selected single crystals were determined from the fields
of first flux penetration using the demagnetizing factor given by Brandt [42] (see
Eq. 3.12). For a list of the used dimensions see Table4.4.

At low temperatures we found a linear behaviour of Hc1 in temperature as dis-
played in Fig. 4.29, which is a further indication of the absence of surface pinning
in our systems. As pinning typically becomes enhanced at lower temperatures a
strong upturn in Hc1 would then be expected. This upturn, in the case of pinning,
was observed for example in YBa2Cu3O7−δ [43]. Using a linear fit to extrapolate the

Fig. 4.27 Electronic specific heat for a BaFe2(As1−xPx )2 sample with x = 0.3. Contributions from
phonons have been removed by a fit to the data. The determination of the transition width �Tc is
illustrated by dashed lines. The solid line represents a construction of the ideal case, used to obtain
the size of the discontinuity �C/Tc. The onset of the superconducting transition coincides with the
values reported previously by Kasahara et al. [1]

http://dx.doi.org/10.1007/978-3-319-48646-8_3
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Fig. 4.28 Measurements of the jump in heat capacity �C/Tc at the superconducting critical tem-
perature Tc (triangles). The obtained data is in good agreement with previous results reported in
Ref. [30] (circles)

Table 4.4 List of sample dimensions for study of lower critical field in BaFe2(As1−xPx )2
Sample x �x lc (µm) la (µm)

C19 0.29 0.01 11 149

C24a 0.30 0.01 27 360

C24b 0.30 0.01 18 360

C24c 0.30 0.01 18 170

C2a 0.31 0.01 28 300

C21 0.34 0.01 20 255

0p3B 0.35 0.01 48 115

C1 0.36 0.01 35 269

C7a 0.39 0.02 17 260

C9 0.47 0.02 40 300

0p6a 0.55 0.02 48 240

data we obtain the zero-temperature lower critical field Hc1(0). The extracted values
are shown in Fig. 4.30.

Surprisingly, instead of a dip at the critical composition xc = 0.3 we find a strong
peak in strong contrast to the prediction based on the penetration depth values [14].As
this violates the expectation from GL-theory we need to take a step back to compare
the two results. The expression for Hc1 is obtained by comparing the Gibbs-free
energy of vortex inside and outside the sample. The lower critical field is identified
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Fig. 4.29 Temperature dependence of the lower critical field Hc1 for BaFe2(As1−xPx )2 samples
with different x indicated in the legend. The dashed lines are fits to the linear part at low temperature
to extract Hc1(T = 0)

Fig. 4.30 Lower critical field Hc1(T = 0) (squares) and the superconducting critical temperature
Tc of BaFe2(As1−xPx )2 versus x . The dashed lines are guides to the eye

as the field where the energy levels are equal. The total energy of the vortex per unit
length is given by [34]

Eline = Hc1φ0

4πμ0
. (4.10)
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Fig. 4.31 Vortex line energy Eline (squares) determined from Hc1 and electromagnetic energy Eem
determined from heat capacity (open circles) andmicrowavemagnetic penetration depth (triangles)
of BaFe2(As1−xPx )2. For derivation see the text. Dashed lines are guides to the eye

In order to create a vortex inside a superconductor a screening current is created
which contributes the electro-magnetic energy

Eem =
(

φ2
0

4πμ0λ2

)
ln κ. (4.11)

This now allows us to compare the results obtained from Hc1 and the London
penetration depth [14] on a more phenomenological level. The results are shown
in Fig. 4.31. Due to the higher scattering of penetration depth data and the good
numerical agreement of the enhancement between λ and γ shown in the previous
section and Ref. [30] we have determine the electromagnetic energy more precisely
using λ(x)/λ(x = 0.3) = γ(x)/γ(x = 0.3). For this we have used the measured
values of the used samples, shown in Fig. 4.28. Based on this analysis we find good
agreement between the energy levels of the two probes far away from the QCP, in
contrast to compositions xc ≤ x ≤ 0.4 where a strong upturn is observed. While the
difference between the two sets of data can not be understood in the conventional
formulation of the GL theory, we will argue that it originates from the vortex core
contribution, that is typically seen as small correction.

The contribution of the vortex core had been neglected in the derivation of Eq. 4.9.
It only entered as constant 1/2 in the logarithm. However the vortex core corresponds
to a normal state region with the radius ξe which is commonly estimated by the
Ginzburg-Landau coherence length ξGL . In the case of an enhanced normal state
energy this simple picture is not necessarily true. Therefore we will calculate the
vortex core energy in the following way.
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Fig. 4.32 Electronic part of the heat capacity of BaFe2(As1−xPx )2 at x = 0.43. The dashed line
presents fit to the data using a single band d-wave model. Courtesy of L. Malone

Starting from an alpha-model fit to the heat-capacity of a sample with x = 0.43
(see Fig. 4.32), this model is then multiplied by the strong enhancement of the heat
capacity that was found previously [30]. From this we can derive the condensation
energy density using

εcond =
∫ ∞

0
[Cs(T ) − Cn(T )] dT, (4.12)

where Cs and Cn are the heat capacity in the superconducting and normal state
respectively. Thus we obtain the condensation energy per unit length of a cylinder
with the effective radius ξe. This energy corresponds in first approximation to the
energy necessary to create a normal state region of size πξ2e inside a superconductor.
As this corresponds to the common definition of the vortex core, we can write

Ecore = εcondπξ2e . (4.13)

As mentioned previously the core size can be estimated by the GL coherence
length, determined from the upper critical field Hc2.Wefind that for ξe(x) ≈ 4ξGL(x)
the residual energy is in good agreement with our estimate of the core energy Ecore

as shown in Fig. 4.33. While a scaling factor is needed to bring the experimental data
in agreement with our calculation, the extracted value is in good comparison to other
techniques probing the effective vortex size. Typical values in the range of 3 to 4 ξGL

are found for systems such as MgB2 [44, 45], LiFeAs [46] and 2H-NbSe2 [47].
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Fig. 4.33 Core energy Ecore (squares) of BaFe2(As1−xPx )2 as determined from the difference
between Hc1 and λ and the condensation energy Econd (open circles) for a vortex with the effective
radius ξe

4.3.3 Conclusion

In conclusion we have determined the lower and upper superconducting critical field
in BaFe2(As1−xPx )2 over a wide range of the superconducting dome. We have found
that despite the strong enhancement in the quasi particle mass we did not find any
unusual increase in the upper critical field as expected fromGL and BCS theory. Our
data suggests that the increase in Hc2 throughout the superconducting range of the
phase diagram is almost entirely described by the increase in Tc. Furthermore this
results is obtained by probing Hc2 close to Tc and at low temperatures. As Hc2 is
not limited by Pauli-pair breaking close to Tc and both probes show good agreement
in the zero temperature limit, we believe that Pauli-limiting effects are not causing
a cut-off of the enhancement at low temperatures. This behaviour is in agreement
with that found in other quantum critical materials such as CeRhIn5 [40]. Since a
deeper theoretical understanding is missing up to date, we would like to stress that
the universality of this behaviour could possibly help identify the unconventional
nature of quantum critical superconductors, as it violates not just the quantitative but
also qualitative predictions from BCS and GL theory.

Further we have found striking results on the lower critical field. Unlike the
prediction from GL theory based on the London penetration depth results [14], Hc1

showed a strong peak rather than a dip at the critical composition xc. While GL
theory is valid far from the QCP is does not hold at the the critical composition. We
were able to show convincing evidence that this result is caused by an unusually
high normal state energy close to the quantum critical point. This high normal state
energy, which is caused by an enhanced normal state quasiparticle mass close to
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the QCP makes the superconducting state energetically more favourable, leading to
a strong peak in the condensation energy. To our knowledge this has been the first
doping dependent study of Hc1. A similar differences between measurements of Hc1

and London penetration depth was found in the field of cuprates [48]. While no
doping dependence was carried out in this study the deviation from GL theory might
be a general property of high-temperature superconductors and especially quantum
critical systems.

In the interpretation of our results we have so far followed the chain causality
of our results. As we were able to show that the quasi particle mass effects the
lower superconducting critical field, we take a closer look at the vortex core that
is the place of origin. The vortex core typically holds low laying Andreev bound
states with energy levels spaced by �/kBTF [49]. As pointed out in Ref. [14] the
Fermi temperature TF = �e2

2πkBm∗ Sk is strongly suppressed at the QCP while the
superconducting gap � is strongest at this point. Therefore we expect a larger than
usual energy-level spacing which leads to higher populated energy states. These not
only make the vortex core energy more important in the treatment in GL theory but
also lead to an extension of the effective core size [50]. In this way the effect of a
strong quasi particle mass enhancement on Hc2 as predicted by GL theory could be
reduced by the enhancement of the effective vortex core size. While we have assume
a constant scaling of the effective core size with x , in this scenario the scaling vari-
able would be proportional to Tc/TF and hence vary with x . The variation between
x = 0.38 to x = 0.3, where we found the strong increase in the core energy, for the
effective core radius by a factor 4, could hence compensate the approximately 5 fold
enhancement of the effective mass.
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Chapter 5
LiFeAs and LiFeP—Stoichiometric
Superconductors

5.1 Introduction

The 122-type superconductor BaFe2(As1−xPx )2, discussed in the previous chapter,
is a good example of the typical phase diagram found in iron-pnictide superconduc-
tors. The parent compound can be tuned from an anti-ferromagnetic ground state to
superconductivity by a variety of parameters. The challenging aspect of this proce-
dure is that the parameter used to suppress the magnetic order typically also intro-
duces disorder in the system. Further it is difficult to find a theoretical model for
a non-stoichiometric system where the location of ‘substitutes’ follows statistical
distributions on the corresponding lattices sites.

111-type pnictide LiFeAs and its counterpart LiFeP do not have these difficulties.
Both materials superconduct in the stoichiometric form with Tc ≈ 18K [1, 2] and
≈ 5K [3] respectively. Above the superconducting critical temperature both show
metallic, non-magnetic behaviour [4]. Hence, we do not expect to find any recon-
struction of the Fermi surface which allows for a direct comparison of the Fermi
surface topologies of the end members. While in other pnictides the maximum Tc is
achieved in a mixed composition in the phase diagram, requesting the use of super-
cell DFT calculations we here have the possibility to compare experimental values
and DFT calculations on stoichiometric systems with an almost 4 fold enhancement
in Tc, minimizing the assumptions made for the crystals structure as starting point
of theoretical models.

One of the open question remains the driving mechanism for the appearance of
nodal and nodeless superconducting gap structures in iron based superconductors.
The framework, that models the gap structure, might also give a microscopic under-
standing of the superconducting pairing mechanism. For LiFeAs a nodeless super-
conducting gap was found using magnetic penetration depth measurements, while
LiFeP was shown to possess nodes on the superconducting gap [4]. As the appear-
ance of these nodes has been closely linked to details in the band structure of these
materials the isovalent systems LiFeAs and LiFeP are truly unique for combination
of experimental and theoretical investigations.
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Fig. 5.1 Crystals structure
of LiFeP

Pnictogen

Iron

Lithium
neutral  

cleavage plane

5.1.1 Crystal Structure

The crystal structures of LiFeP and LiFeAs possess tetragonal symmetry and crys-
tallises in the P4/nmm space group, shown in Fig. 5.1. As discussed in the case of
BaFe2(As1−xPx )2 the lattice parameter shrink when replacing arsenic with phospho-
rous. In LiFeAs we find a = 3.7924Åand c = 6.3639Å[1] and a = 3.6955Åand
c = 6.0411Åin LiFeP [5]. The pnictogen height change from h pn = 1.505Åin
LiFeAs [1] to h pn = 1.327Åin LiFeP [5], presents an ≈13% change compared
to an ≈15% change between BaFe2As2 and BaFe2P2 [6]. As this substitution is
isovalent, meaning the system should not change its charge balance, any difference
between LiFeAs and LiFeP can be linked in first approximation to the presented
changes in the lattice parameter and the resulting changes in hybridization between
iron and pnictogen atomic orbitals.

Not only from its electronic properties, but also from its crystal structureLiFeP and
LiFeAs are interesting for experiments as they possess a neutral cleavage plan. The
double layer of lithium atoms allows to obtain neutral surfaces which are important
to reduce surface effects in surface sensitive techniques like ARPES and STM.

Up to know no single crystals for the intermediate region LiFeAs1−xPx could be
grown. In attempts to grown these phase-separated crystals were found. Also while
crystals available for LiFeAs are typically several square-millimetre big, LiFeP could
so far only be grown up to 150 × 150 × 50µm3. This has great impact on the
possible measurement techniques to study these systems. While LiFeAs has gotten
great attention over the last few years, LiFeP is poorly studied even though its nodal
superconducting gap structure in the stoichiometric form had been very interesting.

5.1.2 Bandstructure

The band structure obtained by DFT calculations using LDA in the WIEN2K pack-
age [7] for LiFeP is shown in Fig. 5.2. The typical result obtained in iron-pnictide
superconductors of hole-pockets in the centre of the BZ and electron pockets at the
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Fig. 5.2 Band structure of
LiFeP determined by DFT
calculations using the lattice
parameter specified in the
text
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zone corner is found. While all pockets possess four-fold symmetry the inner hole-
pocket is special as it has a peanut-shaped topology. We have already discussed in
the context of BaFe2(As1−xPx )2 that such strong difference from a quasi-2D Fermi
surface is caused by the iron-dz2 -orbital. A significant warping is also found on the
outer electron pocket at the top and bottom of the BZ. While the warping on the
electron pockets in BaFe2P2 was caused by the body centred space group, here the
warping is also caused by significant dz2 -orbital weight on the hole pockets.

Thefirst experiments on determining the band structure of LiFeAswere performed
using ARPES [8]. In this work the authors confirmed the Fermi surface having the
typical shape of at least two hole pockets in the center of the BZ and two electron
pockets at the zone corners. Borisenko and co-workers [8] attributed the absence of
a magnetic ground state with the absence of good nesting in the system as shown
in Fig. 5.3. They also suggested that superconductivity in LiFeAs is independent
of the nesting criteria in the system which was believed to be a key ingredient for
superconductivity in the pnictides. However we want to remind the reader of the
discussion on the origin of the magnetic ground state in Sect. 4.1, where we argued
that the emergence of a magnetic ground state is not necessarily caused by Fermi
surface nesting but rather localization effects due to hybridization.

5.1.3 Third Hole Pocket Scenario

Much theoretical and experimental effort was made trying to solve the origin of the
nodes in iron pnictide superconductors. One of the first proposals for their origin
was made by Kuroki et al. [9] only shortly after their discovery. Based on calcu-
lations done on the band structure of LaFeAsO and LaFePO they propose that the
driving mechanism, that switches between a nodal and nodeless gap structure, is
the pnictogen height [9]. In their model they find that the obtained band structure is

http://dx.doi.org/10.1007/978-3-319-48646-8_4
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Fig. 5.3 Momentum distribution map of the Fermi surface shape of LiFeAs measured by ARPES
and taken from Ref. [8]. Solid lines represent � centered Fermi surface sheets, while dashed line
are from M center Fermi surface

fully gapped s±wave nodal s±wave

Fig. 5.4 Schematic representation of fully gapped s±wave (left) and nodal s±wave gap structure.
The solid red and dashed blue curves represent positive and negative sign of the superconducting
gap respectively. Dominant interaction due to nesting are indicated by arrows. The figure was
modified from that found in Ref. [9]

highly sensitive to these changes. Upon reducing the pnictogen height in LaFeAsO
the hole pocket at the corner of the unfolded BZ (see Fig. 5.4a) disappears leav-
ing the system with two hole pockets at the �-point and two electron pockets at
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(π, 0) and (0, π). Since this procedure mimics the substitution of arsenide with phos-
phorous, Kuroki et al. [9] tried to understand how the disappearance of this pocket
effects superconductivity in the system. As we had discussed in the introduction,
the repulsive pair-scattering by SDW fluctuations can still lead to a superconducting
ground state. For this the sign of the superconducting energy gap needs to change
sign, �(k + Q) = −�(k), for parts of the Fermi surface connected by the nesting
vector Q. In an ideal theoretical formulation pair-scattering would only be allowed
for sections of the Fermi surface with equal orbital character, as transition in angular
momentum would be forbidden. So in absence of the third hole pocket the dxy pair-
ing channel between electron and hole pockets would be absent, as the other hole
pockets contain mainly dxz,yz-orbital character, reducing the superconducting gap
on these parts of the Fermi surface. We are then left with an intra-band scattering of
dxy-character parts of the electron pockets, that favours the sign changing within the
electron-pocket. This scenario is indicated in the nodal s± schematic in Fig. 5.4. In
real systems such a strict distinction is not applicable. The orbital character acts not
as an on-off switch, but more as a weighting parameter for the Lindhard-response
function as it enters the exchange potential [10]. In this both the inter-band interac-
tions, leading to nodeless superconducting gap with changing sign between electron
and hole pockets, as well as the intra-band interactions leading to nodes are present.
Details on the Fermi surface, such as the nesting criteria and distribution of orbital
weight determine which of the two, almost degenerate mechanisms, is dominant
leading to a nodal or nodeless superconducting gap structure. To determine whether
this scenario correctly describes the superconducting pairing mechanism in the iron-
pnictides, a detailed determination of the Fermi surface is needed for a realistic
theoretical model.

Lets consider this scenario now for LiFeAs. Platt et al. [11] have calculated the
expected superconducting gap for LiFeAs. Their results are shown in Fig. 5.5. A
strongly anisotropic gap for the electron pockets was found at kz = 0. The dominant
orbital characters are shown as different colors. The third hole pocket discussed by
Kuroki et al. [9] is shown to possess dominantly dxy-orbital character (green Fig. 5.5).
As indicated in the figure the inter-band pair-scattering of parts of electron and hole
Fermi surface with equal dominant orbital character favours a sign change of the
superconducting gap. The intra-band scattering on the electron pockets between parts
with different orbital character favours an anisotropic gap. As seen in the left panel
Fig. 5.5 the superconducting form factor on the parts of Fermi surface with dxy orbital
character have small gap-values at kz = 0. We could imagine that small changes in
the Fermi surface topology or orbital content could lead to a further reduction of the
pair-interaction and hence of the superconducting form factor at these points, leading
to accidental nodes.

To determine whether the third hole pocket scenario correctly describes the for-
mation of nodes on the superconducting gap structure, a detailed study of the bulk
Fermi surface in LiFeAs and LiFeP is desired, which could lead to a more realistic
theoretical treatment.
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Fig. 5.5 Leading superconducting form factor for LiFeAs calculated by Platt et al. [11] along cuts
on the Fermi surface at kz = 0 and kz = πa/c. Orbital weights are indicated in colors. Since these
calculations were performed in the unfolded BZ the orbital characters are rotated by 45◦. Hence the
indicated dx2−y2 orbital character corresponds to dxy in the text. Figure was taken from Ref. [11]

5.2 Fermi Surface of LiFeAs

De Haas-van Alphen measurements in pulsed and high static magnetic fields have
been carried out to determine the Fermi surface properties of LiFeAs. As the material
is highly sensitive to air the single crystals were stored in sealed quartz tubes under
vacuum and were only taken out at the user facilities right before the experiment.
The ampoules were opened inside a glove bag under argon atmosphere to minimize
the contact to air and were then covered in degassed grease. For this we have used
Apiezon N grease, which was heated to 150 ◦C and then pumped repeatedly until the
formation of bubbles in the grease vanished. With this procedure it was possible to
increase the lifetime of the crystals to several days. By storing the samples at liquid
nitrogen temperatures we were able to detect superconductivity in the samples even
after several months. Torque measurements were first carried out in pulsed magnetic
field at the LNCMI-Toulouse and later in static fields at the NHMFL-Tallahassee. In
Fig. 5.6 the raw signal obtained in pulsed field at T = 1.5K is shown. By removing
a smooth background and performing a FFT we obtained the spectrum shown in
Fig. 5.6. Three different peaks can be observed. While we would expect five pockets
from band structure calculations, leading to possibly ten different extremal orbits,
the fact that oscillations can only be observed in high magnetic fields above 30T
suggests that the observation of the predicted higher frequency orbits is limited by
the samples having insufficiently long mean-free-path.
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Fig. 5.6 Torque signal obtained in pulsed field at the LNCMI-Toulouse for LiFeAs (left panel). In
the right panel the FFT after subtracting a smooth background is shown

Afirst angle dependence of the observed frequencieswas taken in pulsedmagnetic
field, while a more detailed set of data was obtained at the NHMFLTallahassee using
static fields up to 45T and temperatures down to 0.3K. These low temperatures are
beneficial for LiFeAs as themasses foundwere up to six times the free electronmass.
Moreover unlike in BaFe2(As1−xPx )2 where we found the same mass in pulsed and
static fields LiFeAs was very sensitive to eddy current heating present in pulsed field.
We found that the effective mass determined in pulsed field was significantly lower
than that in dc fields. During the fast increase in magnetic field in the pulsed magnet
system, the sample experiences heating caused by eddy currents. This leads to the
fact that the real temperature of the sample at the point where quantum oscillations
are observed is higher than the surrounding bath temperature. This causes a lower
oscillation amplitude at the desired temperature and hence an underestimation of the
effective mass. We found that while data taken between 2.2 and 4.2K was roughly in
agreement between pulsed and dc fields, the data below the lambda-point of helium
showed strong variation between the two magnet-systems. This is believed to be
caused by a strong reduction in Kapitza-resistance below the lambda point, causing
a lower thermal conductivity between the sample and the bath [12, 13].

The reason for this to affect LiFeAs but not the experimental values on BaFe2
(As1−xPx )2 might be due to the sample geometry. The samples used for LiFeAs were
cleaved, thin plate-like pieces. Therefore the ratio of cross section in field compared to
the total volumewasmuch larger than the samples measured in the BaFe2(As1−xPx )2
study. Due to this observation all masses which are stated in Table5.1 where taken
in static fields.

The mean free path of LiFeAs was found to be as low as 10nm causing an
underestimation of the effective mass when taking a large field window of 30–45T.
This was first checked by simulating the data with the obtained results from the LK-
fit to the amplitude and field dependence. Generating data with a mean free path of
l = 10nm, a frequency of F = 3000T and amass ofm∗ = 6me and then using the same
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Table 5.1 Measured values for LiFeAs for the dHvA frequencies extrapolated to θ = 0. The
effective masses and bandmasses are given in units of the bare electron mass. Values marked with
� are taken on data that might possibly include contributions form different orbits

Orbit F0(T ) mb m∗ λ

δ 2400(25) +1.22 5.2(4) 3.3(3)

β� 1590(10) +1.54 6.0(4)� 2.9(3)

ε 2800(40) +1.02 5.2(4) 4.2(4)

analysis as for the data, we find an effective mass m∗ = 5.5me. In order to correct
for this behaviour we have hence carried out fits to the complete data set including
the oscillatory part of the signal between 30 and 45T at all measured temperature.
For this the frequencies were fixed to the values found in the FFT and the Dingle
term using data at base temperature. Then the magnetic field was parametrized to
include the temperature B ′ = T (B) and substituted in the LK formula. In this way
the Dingle term and effective mass can be fitted at the same time as the torque signal
is only a function of temperature but not field any more. Any influence on the results
obtained and presented in Table5.1 from the Dingle term can thus be ruled out. The
oscillation frequencies were determined at various angles of the applied field with
respect to the c-axis of the sample. The results are shown as F cos θ in Fig. 5.7.While
a perfect cylindrical Fermi surface would give a constant value in this representation
we find that orbits β and δ bend upwards while orbit ε shows a downwards bending.
Further we can see the ε has a more constant dependence around θ = 0. Form
this behaviour we can compare the observed frequencies with the angle dependence
obtained from band structure calculations. We find that the evolution of F versus
θ for ε is best described by that found for the maximum orbit of the inner electron
pocket and β by the minimum of the same pocket. The orbit marked as δ shows good
agreement with that calculated for the minimum of the outer electron pocket. The
band structure could be brought into good agreement with the experimental values
by rigid band-shifts of −5meV for band 4 and +18meV for band 5. These shifts are
small compared to those needed in other compounds [14, 15]. The necessity of these
shifts is believed to originate from many-body corrections to the DFT band structure
[16]. In Ref. [16] the authors show that different bands require different shifts to their
chemical potential, as the shift is proportional to the inter-band interaction strength.
As this varies due to for example nesting criteria, a non-uniform shift is justified
(Fig. 5.8).

While the main identification of the observed frequencies can be done by only
considering the electron pockets of the system, we can make some predictions on the
hole pockets. For the β orbit a significant scattering in frequency was observed in
pulsed magnetic field. This could originate from a difference in the mean free path
of different orbits at different angles and hence could be interpreted as originating
from the middle hole pocket found in calculations. As already mentioned the mean
free path in these crystals was lower than we will see in LiFeP, but in the case
of a significant reduction in orbit size of band 2, as found in ARPES, we would
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Fig. 5.7 Angle dependence of LiFeAs. Right panel shows the results from bandstructure calcula-
tions. The middle panel has data measurements in static (squares) and pulsed (triangles) magnetic
field. The bandstrcuture has been brought into agreement with the observed extremal orbits using
rigid bandshifts. The pockets found in bandstructure calculations are shown on the right as guide

Fig. 5.8 Temperature dependence of the FFT amplitude of LiFeAs for the observed extremal orbits.
The data was taken in a field range of 30–45T. Solid lines represent fits to the temperature dependent
part of the LK formula

still expect to see this in the experimental results. We therefore believe that band 2
experiences similarly small rigid band shifts, causing a good nestingwith the electron
pockets and hence in the available angle range no distinction can be made between
the observed frequencies. Hence δ and β likely contain contributions from different
extremal orbits. For the inner most hole pocket, that is predicted to have a very small
extremal orbit, we would expect to find a strong peak in the frequency spectrum as
we will see later is the case in LiFeP. The absence of this peak suggests that this band
does not cross the Fermi level. As argued in the Ref. [17], the arsenic end member
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should show more localized bands caused by the longer iron-pnictogen distance. In
order to suppress this band below the Fermi level we would require a rigid band shift
of only 40meV. The absence of this pocket would also account for the change in
ratio between electron and hole-volume in the BZ that needs be consistent before
and after rigid band shifts. In order to prove these suggestions samples with a longer
mean-free-path are required to be able to study band 3 or increase the range in 1/B
where oscillations are observed such that a differentiation between frequencies from
band 2, 4 and 5 are possible in the FFT.

The identification of the frequencies asmainly originating form the electron pock-
ets can now be used to compare the determined effectivemasseswith the bandmasses
of the individual orbits. We find renormalization values λ = m∗/mb − 1 of 3–4 (see
Table5.1) showing a significant enhancement over the value expected for electron-
phonon coupling λ = 0.2 [18].

5.3 Fermi Surface LiFeP

For measurements in LiFeP the same procedure was used as for LiFeAs. It should
be pointed out that the available single crystals were however much smaller than
those of LiFeAs. In order to determine the superconducting critical temperature we
have therefore used a tunnel-diode oscillator which has high sensitivity for small
changes of the inductance of the coil. With this technique we were able to determine
the superconducting transition of a single crystal of 50 × 50 × 10µm3 shown
in Fig. 5.9. The result is in good agreement with previous reports [3]. For this size
of crystals the SEIKO PRC400 micro-cantilever were used in high static fields in
Tallahassee to study quantum oscillations. Data obtained from torque magnetometry
in pulsed field using SEIKO PRC120 is shown in Fig. 5.10a. One can see that the
observed signal is an order or magnitude lower than that of LiFeAs which is caused
by smaller sample size. The oscillation amplitude is about 20% of the paramagnetic

Fig. 5.9 High frequency
susceptibility measurements
of the superconducting
transition of LiFeP obtained
after dHvA measurements in
the same crystal. The
observed onset of
superconductivity is in good
agreement with previous
reports [3], showing that the
sample had not degraded
during the experiment
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Fig. 5.10 Torque signal obtained on LiFeP in pulsed magnetic field at T = 1.5K (left panel). By
subtracting a smooth background the oscillatory part of the torque signal remains (right panel)

(a)

(c)

(b)

Fig. 5.11 FFT taken on the oscillatory troque signal of LiFeP in different field ranges. a 25–58T:
showing the split in the extremal orbits of α, b 40–58T: better signal to noise ration for high
frequency peaks and c 33–45T: taken at in dc field at θ = 51◦

background and we start to observe oscillations below a field of 20T. The FFT of the
data, shown in Fig. 5.10b, contains a variety of peaks, Fig. 5.11. While the spectrum
is mainly dominated by a low frequency contribution, further small peaks, clearly
above the noise-level can be observed at high Frequency.

A detailed angular dependence of the oscillation frequency was taken at the
NHMFL Tallahassee. By plotting the result as F cos θ, which, as mentioned, is
constant for a perfect cylinder, we find the result shown in Fig. 5.12a. The solid
symbols represent first harmonics while open circles are frequencies that were iden-
tified as higher harmonics. This was the case for example for frequencies around
F cos θ = 700T where the angle dependence resembles that of α and the mass was
found to be double that of α as expected from the LK formula.
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Fig. 5.12 Angle dependence of the observed oscillation frequencies of LiFeP. The left panel shows
the obtained data. Solid sqaures represent extremal orbits observed in dc field.Triangles are obtained
in pulsed magnetic field. Peaks identified as higher harmonics in the FFT are shown as circles.
The middle panel shows the data superimposed by results from bandstructure calculations. The
bandstructre was brought into agreement with the data using rigid bandshifts. The right panel
shows the Fermi surface pockets obtained in calculations as guide

At low frequencies we find an almost cylindrical Fermi surface indicated as α.
While two distinct frequencies are observed at θ = 0 which merge into one by
the higher one bending downwards and the lower one bending slightly upwards.
Therefore we can identify these to originate form the same pocket representing
maxima and minima orbits. As seen by data taken close to θ ≈ 90◦ the frequency
in F cos θ is bending down showing a strong deviation form a cylindrical behaviour.
This behaviour of F(θ) is shown to be in good agreementwith the predicted frequency
and shape of the inner hole pocket in DFT calculations. The theoretical prediction
can be brought into agreement with the experimental results by applying a −65meV
rigid band shift. For orbits δ and ε we find that the angle dependence is very similar
to that found in LiFeAs. We therefore assign these to the electron pockets obtained
in DFT calculations. By rigid band shifts of +20meV for δ and +45meV for ε the
DFT calculations show good agreement with experimental results. The minimum
frequencies of the inner electron pocket, as predicted by theory is close to the β-
orbit seen in experiments. The significantly lower variation in F cos θ suggests this
frequency to originate from a more cylindrical Fermi surface sheet. As it bends
upwards we can then identify it as minimum extremal orbit. Similar behaviour but as
maximum orbit is observed for γ. We therefore turn to this first and find that it is in
good agreement with the middle hole pocket by shifting the band by −80meV. This
now shows that β has most likely mixed contributions from themiddle hole and inner
electron pocket. At angles around 30◦ an additional frequency is observed around
F cos θ ≈ 1000T. This labelled as η shows a stronger upturn and suggests that the
kz dispersion form the inner electron pocket might be underestimated, leaving η to
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represent the minimum of this pocket. Additional very strong peaks were observed
at high angles of θ ≈ 51◦. Those could only be observed in a small angle range but
showed a very flat behaviour. This being in good proximity to the frequency expected
for the outer hole pocket, we could bring the two in agreement by applying a 18meV
rigid band shift. While only very weak peaks were observed around θ = 0 for this
band the strong response at this angle is cause by the Yamaji effect. At this angle
the shape of the Fermi surface pocket leads to the fact that maximum and minimum
orbits merge into one frequency. Hence the curvature factor found in the LK formula
causes the amplitude to become maximal.

After this identification of the Fermi surface sheets using the angle dependence of
the dHvA frequencies we possess a theoretical model of the Fermi surface topology
which can be used in for further analysis and possible theoretical investigations.

Taking the obtained model of the Fermi surface, we have performed cuts of the
extremal orbits at the center and top of the BZ. Those are shown in Fig. 5.13 for
LiFeAs and LiFeP. We find that both systems are close to fulfilling the geometrical
nesting condition. This has been illustrated by plotting cuts of hole pockets (dashed
lines) on top of those found for electron pockets (solid lines). Geometrical nesting is
expected where shape and size of different Fermi surface sheets are congruent.

For each observed orbit wewere also able to extract the effectivemass by fits of the
LK formula to the temperature dependence of the oscillation amplitude, see Fig. 5.14.
As discussed in the context of LiFeAs all masses were taken in dc magnetic field and
checked for influences of theDingle term.We could further use the obtainedmodel of
the DFT band structure to obtain the band massmb. By comparing the DFT values to
the experimental results we obtain the renormalization factor λ = m∗/mb−1, which
reflects interactions such as electron-phonon and electron-electron interactions that
are not captured in the LDA band structure calculation. The resulting values are
summarized in Table5.2.

For closely space frequencies such as orbitβ andηwehavefitted the entire data-set
τ (T, B) as described for LiFeAs using the LK formula. As the bandmassmb is given
as the second derivative of the energy dispersion at the Fermi level we can also relate

LiFeP LiFeAs

Fig. 5.13 Slices of the Fermi surface of LiFeAs and LiFeP at kz = 0 and kz = 0.5. The dashed
(solid) lines represent the hole (electron) sheets after rigid band shifts as, explained in the text. The
pockets where shifted in [110] direction to overlap for better comparison
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Fig. 5.14 Temperature dependence of the FFT amplitude of the observed extremal orbits in LiFeP.
Field ranges are indicated in the panels respectively. The solid lines are fits to the data using the
temperature dependence in the LK formula

it to the change of extremal area with respect to changes in the chemical potential.
This is the procedure used to determine the band mass from DFT calculations. By
calculating A(EF+�E) and taking the first derivativewe obtainmb. For hole pockets
we find that the extremal area shrinks with increasing the chemical potential, while
for electron pockets the opposite is the case. Therefore we can distinguish electron
and hole pockets in DFT calcluations by the sign of their band masses. We find in
LiFeP three bands with negative band masses that hence correspond to hole pockets
and two with positive signs, electron pockets, see Table5.2. While we had argued
in the introduction that in the presense of the third hole pocket we would expect the
lifting of nodes the comparison with penetration depth shows that this seems not to
hold for LiFeP.

Surprisingly while most bands in LiFeP show an enhancement of 1.4–2.3 the
orbits β and γ found for the middle hole pocket show a much lower renormalization
of 0.6 and 0.7. The value that was expected for electron-phonon coupling, as already
mentioned, λep = 0.2 [18]. So while the strongly kz dependent Fermi surface sheets
of inner and outer hole pocket are enhanced by a factor 10 over λep we find for most
cylindrical hole sheet only a factor 3 to 4 which is similar to those found in non
superconducting BaFe2P2 [19]. As within BCS theory the superconducting gap is
linked to the density of states at the Fermi level and hence to the effective mass, this
finding would suggest to find the smallest superconducting gap on band 2. Hence it
might be a good candidate for the formation of accidental nodes seen in magnetic
penetration depth measurements [4].

In the case of LiFeAswe had argued that only two hole pockets are present, raising
the question whether the absent hole in LiFeAs is the discussed third hole pocket.
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Table 5.2 Measured values for LiFeP for the dHvA frequencies extrapolated to θ = 0. The effective
masses and bandmasses are given in units of the bare electron mass. The values marked with † are
taken at an angle of θ = 51.3◦. Values marked with � are taken on data that might possibly include
contributions form different orbits

Orbit F0(T ) mb m∗ |λ|
α1 316(2) −0.44 1.1(1) 1.5(3)

α2 380(2) −0.39 1.0(1) 1.6(3)

β† 2040(10)† −1.7† 4.4(1)† 0.6(2)†

β� 1160(10) +1.1 3.6(2)� 2.3(2)�

γ 1670(10) −1.6 2.7 0.7

ζ† 5550(10)† −1.8 7.7(2)† 2.1(5)†

δ 2040(20) +0.92 2.2(1) 1.4(1)

ε 2840(10) +0.83 2.2(2) 1.6(3)

For this we can compare our findings to more detailed calculations on the orbital
character, including Wannier function [4]. The results of these calculations, see in
Fig. 5.15, show the distribution of dxy orbital character among the Fermi surface.
Kuroki et al. [9] predicted that the third hole pocket would contain dominantly
dxy orbital character. In LiFeAs such a pocket is found and identified as the outer
hole pocket. Hence it is present in this system. In LiFeP distributions of dxy orbital
character are found for the middle and outer hole pocket, showing a significantly
different result than LiFeAs. The mixed orbital weight is caused by a degeneracy of
these pockets without spin-orbit coupling. It was pointed out earlier that the orbital
content has influence on the pair-scattering strength between orbits.We had argued in
the introduction that the calculations by Tapp et al. [1] had shown a highly anisotropic
gap on the electron pockets that was close to becoming nodal. While both LiFeAs
and LiFeP are close to fulfilling the geometrical nesting condition the more detailed

Fig. 5.15 Fermi surface of LiFeAs (a) and LiFeP (b). The Fermi surface pockets have been colored
representing the orbital weight of dxy orbital character. Figure taken from Ref. [4]
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and possibly minor effect of a change in the orbital weight distribution could still
cause the inter-band pair-scattering to reduce enough to lead to accidental nodes.
This however would suggest the nodes to be located on the electron pockets.

Following this argument and suggestions made byMaier et al. [10], the formation
of a superconducting gap in the SDW channel is favoured by good nesting of Fermi
surface sheets with equal orbital character, we notice that this should hold both
for the middle and outer hole pocket equally. The strong difference seen in the
renormalization of the two pockets is not expected from this point of few as both
are close to good nesting and contain similar orbital characters. This is even more
surprising when comparing the renormalization of the inner and middle hole band.
As the inner hole pocket is seen to possess a peanut-shaped topology that is caused
by strong dz2 orbital character at the top and bottom of the BZ it should be less
susceptible to inter-band interactions than others. The renormalization however is
close to that found for the outer hole pocket.

When comparing the renormalizations found for LiFeP with those for LiFeAs on
the electron pockets we find a factor 2 increase for LiFeAs. This goes along with
the increase in Tc from 5 to 18K. Hence we argue that the driving mechanism for
the enhancement of the quasi particle mass is the same that causes the increase in
Tc. This would again favour the scenario of nodes on the middle hole pocket as this
would be least coupled to this interactions.

5.4 Bandstructure Calculation

As the bandstructure of iron-based superconductors depends significantly on details
in the crystal structure in this section wewill take the approach to investigate changes
of the pnictogen height h pn and the crystal structure on the bandstructure of LiFeP
by using the WIEN2k-package [7]. Starting from the lattice parameters determined
by x-ray diffraction for our crystals a = 3.6955Å and c = 6.041Å [20]. The structure
parameter are used from Tapp et al. [1].

5.4.1 Importance of the Pnictogen Height

Since the pnictogen height has been suggested to play an important role for the
formation of nodes on the superconducting gap structure [4, 9] we will focus on
this first. To get an idea of the changes on the band struture in LiFeP due to this,
calculations for different values of the pnitogen height, leaving the lattice parameter
constant, were performed. The resulting bandstruture is plotted in Fig. 5.16 for the
pnictogen height according to Ref. [1] and for a 10% change. This rather large
change was used for clarity as the present study should serve to identify trends
rather than quantitative results. The most important orbital content dxy and dxz,yz
are plotted separately. While for the pocket made up mainly of dxy-orbital character
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Fig. 5.16 Bandstructure of
LiFeP obtained from
experimental lattice
parameters (a). In panel (b)
the only parts with dominant
dxz,yz orbital character are
shown for experimental and
values of the pnictogen
height h pn and for a 10%
change. The same procedure
has been done for the dxy
orbital character in panel (c)

(a)

(b)

(c)
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the change occurs in pocket size, the other bands are mainly effected by bandwidth.
The change in the first case, dxy-orbital, is consistent with the change predicted in
Ref. [9], for the given parameter the bandstructure calculation predicts three hole
pockets in the system. However in LaFePO Kuroki et al. [9] were able to show the
disappearance of the third hole pocket, which would require a much larger change
in the crystal structure of LiFeP. Further the result shows that even so rigid band
shifts, as mentioned in the BaFe2(As1−xPx )2 section, give good agreement with the
experimental results, for bands with strong orbital mixing this procedure might not
be suited.

5.4.2 Variation in Lattice Parameter

Single crystals of LiFeP are only available in small dimensions as mentioned
before. This makes it hard to resolve the lattice parameter with high precision. As
these are believed to have great influence on the bandstructure [9], calculation with
varying lattice constants around the experimental values have been performed. To
illustrate the changes, the extracted de Haas-van Alphen frequencies are plotted as
function of angle in Fig. 5.17. The lattice parameters were varied by 3 and 5% in
both direction. The used values are indicated in the plot as (�a,�c). Changing the
parameter causes the observed pockets to change their kz-dispersion and the size
of the extremal orbits. By increasing the unit cell the system becomes more two-
dimensional and promotes better nesting. Plotting the frequencies F0 observed at
θ = 0 versus the change in lattice parameter, one can see that the change is not
uniform among all pockets. This is again in agreement with the concept of an orbital
dependent change of the Fermi surface.When plotting the bandstructureweighted for
the dxy orbital character we find that by changing the lattice constants the bandwidth
of all orbital characters is effected. The observed changes in the nesting condition,
bandwidth and kz-dispersion with small changes in crystal structure show the need
for a detailed experimental understanding of the Fermi-surface. Only a theoretical
model that reflects the realbulk Fermi surface topologywill be able to help understand
the mechanism that drives superconductivity and test theories aiming to explain the
nodal versus nodeless superconducting gap.

5.5 Further Development

Further work by theorists and other experimentalists including scanning tunnelling
microscopy has been carried out since the publication of our results. While data
obtained on LiFeP is still rather limited as available single crystals remain small,
LiFeAs has proven to be of great interest to the community. Measurements using
ARPES had stated the absence of nesting in the LiFeAs [8] which we could not
confirm in our results. As the hole pockets up to date are not seen in LiFeAs using
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Fig. 5.17 Bandstructure calculation for 5% increased (top left) and experimental (middle left)
lattice parameter. Further the evolution of the expected dHvA frequencies are shown for a change
of ±5% in lattice parameter and the trend of F0 in the case of �a = �c (bottom right). Respective
changes in lattice parameters are shown in the panels
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quantum oscillations, we suggested that the presence of a pocket with F0 ≈ 350T
as determined from ARPES [8] should give rise to a strong signal comparable to
that observed in LiFeP. This holds even when assuming a similar behaviour as for
BaFe2(As1−xPx )2, where the mean free path of the hole pocket decreases strongly
upon substitution of arsenide for phosphorous. In further attempts to observe signals
from the hole pockets we have repeated the experiment using samples grown with
a different method [21] that had shown higher residual resistivity ratios of ∼250.
With these samples it was possible to reproduce our previous results, however the
ratio of oscillation amplitude to paramagnetic background was smaller, suggesting
that a smaller fraction of the sample contributed to the dHvA signal. Studies using
STM [22] showed later that the missing hole pockets are in good agreement with the
prediction made by band structure calculations. While they were not able to observe
the electron pockets, this is believed to be in agreementwith a higher scattering rate on
the hole pockets than on the electron pockets. For comparison the area determined
by STM was transferred to the minimal oscillations frequency using the Onsager
relation, Eq. 2.22. The results are shown in Fig. 5.18 for the orbits determined by
ARPES [8], dHvA and STM [22].

Fig. 5.18 Angle dependence
of the dHvA oscillation
frequency of LiFeAs. Data
presented in this work
(squares) and the
bandstructure obtained by
LDA calculation (solid lines)
is compared with data taken
by ARPES (stars, hole
pockets) [8], STM (triangles)
[22] and also LDA+DMFT
calculations (diamonds) [23]
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Ferber and co-workers have later performed calculations on the band structure of
LiFeAs and LiFeP using local density approximation + dynamic mean field theory
(LDA+DMFT) [23, 24]. They propose that the implementation of interactions not
captured by LDA are responsible for the different results seen by ARPES and dHvA
experiments. We have therefore added the proposed extremal orbits fromRef. [23] to
Fig. 5.18 for comparison. Those values were obtained for U = 4eV and J = 0.8eV.
While they yield a significant increase in band 3 the values obtained for band 2 are in
rather good agreement with dHvA and STM [22] results rather than ARPES [8]. A
further increase in the Hund’s coupling J would enhance the trend, but it would still
not bring band 2 in agreement with the data obtained byARPES. The same procedure
was also used in Ref. [24], where the expected dHvA frequencies fromLDA+DMFT
were calculated for LiFeP. Only little changes to the LDA band structure were found
that could neither explain the large shift of band 2 nor the low frequencies obtained
on band 1 correctly. Whether the application of DMFT calculation can lead to a
reconciliation of ARPES and dHvA data is therefore not clear. The observed trend is
comparable to that found in Ref. [17] where the increase in Hund’s rule J coupling
is related to the change in lattice parameter, leading to an enhanced localization.
However we believe this can only be seen as a trend, since DMFT only considers
onsite interactions, while long wave-length interactions are neglected [17, 24].

This can also be seen when comparing the mass-enhancement found in dHvA
measurements and DMFT calculation [23, 24], shown in Fig. 5.19. In Ref. [23] the
authors had stated the mass-enhancement for different orbital character. We have
therefore used the dominant orbital character to represent the enhancement factor for
each orbit. We find that the quasi particle mass-enhancement in LiFeAs and LiFeP
is roughly a factor two lower in LDA+DMFT than the values obtained by dHvA
measurements. In LiFeP we see that the low renormalization in band 2 from dHvA is

Fig. 5.19 Comparison of quasi particle mass of bands in LiFeAs and LiFeP as found by dHvA
measurements (squares) and LDA+DMFT calculations [24] (triangles). Bands 1, 2 and 3 are inner,
middle and outer hole band respectively, while 4 and 5 are the outer and inner electron band



142 5 LiFeAs and LiFeP—Stoichiometric Superconductors

the only one found to be in good agreement with the calculations. This suggests that
the middle hole pocket is only coupled to onsite interactions while a non-local effect
causes a further enhancement of effective mass in the other pockets. While the trend
for the formation of magnetism was correctly obtained in Ref. [17] by this procedure
the obtained results being close to that for non-superconducting BaFe2(As1−xPx )2
suggests that superconductivity is caused by non-local effects.

A third point discussed in Ref. [24] is the possible origin of nodes in LiFeP.
Following the suggestion by Kemper et al. [25], the dz2 orbital content, causing the
peanut-shaped inner hole pocket, might be responsible for the formation of nodes
on the superconducting gap by reducing the pair-interaction. By including DMFT
Ferber et al. [24] found that the inner hole pocket changes from a cigar shaped
pocket to a cylindrical Fermi surface sheet. While we were not able to observe
quantum oscillations at θ = 90◦ in LiFeP we did observe a significant down turn of
the oscillation frequency in F cos θ suggesting a significant kz-dispersion. We must
therefore conclude that the strong change to a cylindrical Fermi surface sheet of
the inner hole pocket might be an artefact of the chosen U and J parameters. The
proposed promotion by dz2 orbital character [25] therefore still holds in LiFeP.

5.6 Conclusion

In summary we determined almost the entire Fermi surface topology of LiFeP. For
LiFeAs we were able to observe both electron pockets. For both materials the exper-
imental results were in good agreement with band structure calculations. Including
results obtained by STM [22] this is also the case for the hole pockets in LiFeAs.
Based on the refined Fermi surface calculations we suggest that both systems pos-
sess significant nesting. The mass-enhancement between the systems is in agreement
with the increase in Tc, suggesting a relation between the mechanism causing the
mass-enhancement and superconductivity. An open question remains the appearance
of nodes in the superconducting gap structure of LiFeP. We found three hole pockets
for this systems which, as mention, are well nested with the electron pockets. While
this should lift the nodes [9], nodal behaviour was observed in penetration depth
measurements [4]. Based on our results and further development three different pos-
sible scenarios were discussed that could possibly lead to the formation of nodes on
the superconducting gap on different Fermi surface sheets. The most striking feature
that has not been reproduced in theoretical work so far is the significant difference
in mass enhancement between the different hole pockets in LiFeP. Despite the low
superconducting critical temperature, LiFeP might help to understand the nature and
origin of accidental nodes.
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Chapter 6
YBa2Cu4O8

6.1 Introduction

High temperature superconductivity in copper oxides remains a challenge more than
25years after their discovery byBednorz andMueller [1]. High quality single crystals
in the field of iron-pnictides were available within months after their discovery,
whereas it took almost 20years until advances in crystal quality and measurement
techniques in high magnetic field lead to the first observation of quantum oscillations
in the cuprates [2].

While there are some similarities in the phase diagrams of cuprates and pnic-
tides, see Fig. 6.1, there are even more differences. The similarities that led to a large
interest in the pnictides and the hope that they would help towards a better under-
standing of cuprates was based mainly on the close proximity of superconductivity
and anti-ferromagnetism (see phase diagram Fig. 6.1). However, while the pnictides
possess ametallic ground state the cuprates become insulatingwhen entering the anti-
ferromagnetic state. This being due to the half filled bands in these materials, it can
be understood by Mott-Hubbard-Physics [3]. Upon doping with holes or electrons
the AFM state is suppressed. While for electron doped systems like Nd2−xCexCuO4

(NCCO), with lower Tc, this leads to a superconducting state covering the QCP of
the AFM state, in the hole doped systems the AFM state typically is suppressed to
zero at the verge of superconductivity. At the same time a new state is found that
sets in at high temperature. By optical measurements is was found that in this phase
the density of states at the Fermi-level is reduced. This is known as the pseudogap
[4]. While the orgin of this state is still under strong debate a variety of phenomena
where observed in this region of the phase diagram. A change in the Hall signal from
hole to electron like upon cooling was observed in YBa2Cu3O7−δ (YBCO) [5] in the
underdoped (UD) regime. Here quantum oscillations showed, in the same system,
a small Fermi-surface pockets which covered only about 2% of the BZ while in
the overdoped regime a large Fermi-surface sheet was observed in Tl2Ba2CuO6+δ

(Tl2201), see Fig. 6.4 [2, 6]. ARPES experiments had previously shown the large
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(a) (b)

Fig. 6.1 Schematic phasediagram of cuprates (a) and pnictides (b). Taken from Ref. [7]

Fermi surface in the overdoped (OD) regime where also Fermi liquid behaviour, T 2

dependence of resistivity, was observed. In the UD regime however, ARPES only
observed Fermi arcs [2], disconnected pieces of the original Fermi surface in the
nodal direction. Those were believed to arise from a loss of density of state in the
pseudogap region in the anti-nodal direction of the BZ. Therefore the observation of
quantum oscillations should have not been possible.

A possible explanation was given by Seibold et al. [8], who discussed the change
in spectral weight at the Fermi surface in the context of nesting leading to a formation
of an incommensurate charge density wave (CDW). They found in their calculation
intensity distributions very similar to those seen in ARPES experiments.

Recently the formation of an incommensurate CDW has been of great interest
as it was found to exist in a variety of UD cuprates [9–11]. The onset well above
the superconducting transition has been observed by resonant x-ray studies. There
the authors observe that the intensity of the CDW increases when lowering the
temperature but starts to drop again below Tc [9]. It is therefore interpreted as a
competing order to superconductivity. When applying a magnetic field the intensity
below Tc increases. Nuclear magnetic resonance [12] and ultrasound measurements
[13] have found charge order in magnetic fields above 18T. The onset temperature
of the charge order in field is in good agreement with the results obtained on the Hall
measurements as shown in Fig. 6.2a.

When comparing the onset temperature TH , at which the Hall signal deviates from
it extrapolated value, (see Fig. 6.2b) with the value of the onset of CDW [9] one finds
that those values are in good agreement.

Further the deviation of the superconducting critical temperature from a perfect
parabolic behaviour [14], shown in Fig. 6.2 and the competition found between super-
conductivity and CDW [9] causes speculation as to whether the CDW is the long
missing building block leading to superconductivity or if its appearance hinders a
higher superconducting critical temperature.
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Fig. 6.2 a Superconducting critical temperature of YBCO (squares) as function of doping p [14].
The solid circles show the temperature T0 below which as negative Hall signal is observed in
high magnetic field [15]. Diamonds represent the temperature at which charge-order was observed
in fields above 18T by NMR [12]. b The temperature of sign change of the Hall signal T0 the
maximum in Hall signal Tmax and the temperature at which the Hall coefficient starts to deviate
from its predicted value TH are shown for a variety of doping of YBCO in the UD regime [15]

6.1.1 Crystal Structure and Crystal Growth

Single crystals of YBa2Cu4O8 (Y124) were grown by S. Adachi using a self-flux
method under high pressure [16]. For this a high-pressure gas mixture of 80% Ar -
20%O2 wasused.The startingmaterialsY2O3,BaCO3 andCuOwereplace in aY2O3

crucible in the ration 1:8:20. After calcination a high-pressure growth using a O2 hot
isostatic pressure apparatus, single crystals of typically 0.1 × 0.2 × 0.05mm3 were
extracted. Those crystals have Ammm space group, determined by x-ray diffraction
[16], which is shown in Fig. 6.3.

Y124 features fully occupied copper-oxide double chains, unlikeYBCOwhere the
oxygen stoichiometry is rather unstable. ThismakesY124 thermallymore stable than
YBCO [17]. While the oxygen content in YBCO can be changed with relatively low
temperatures [18], for Y124 no changes of composition or superconducting critical
temperaturewere observedup to 850 ◦C[17]. This allowsus to cure electrical contacts
at elevated temperatures in Y124. Also the structural transition from tetragonal to
orthorhombic symmetry found in YBCO is absent in Y124. These benefits over
YBCO make the system particularly interesting as the complications of different
oxygen ordered states are not present in Y124.

In order to compare results obtained on Y124 to those on YBCO it is desirable
to locate it on a ‘general’ phase diagram. When doping Y124 with Ca it was found
that the superconducting critical temperature increases up to 90K [19] and therefore
Y124 should be place on the UD side of the phase diagram. A more precise value of
p = 0.14 was given in Ref. [20], which was obtained by averaging data from Tc, the
pseudogap temperature T ∗ and Seebeck coefficient compared to YBCO.
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Fig. 6.3 Crystal structure of
YBa2Cu4O8
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6.1.1.1 Fermi Surface in the Cuprates

The first quantum oscillations in a cuprate were observed in YBa2Cu3O6.5 using
Shubnikov-de Haas measurements [2]. The oscillations with frequencies of F =
540T corresponded to small Fermi-surface pockets covering only about 2% of the
BZ. see Fig. 6.4. This observation was a big surprise as ARPES measurements had
suggested that UD YBCO should not have a closed Fermi surface but only contain
Fermi arcs. Shortly after two groups found quantum oscillations also in Y124 with
very similar frequencies F = 660 ± 30T but slightly higher effective masses m =
2.7 ± 0.3 [20, 22] than those observed in YBCO. Since those first discoveries a
number of reports have shown the evolution of the effective mass and oscillation
frequency in the underdoped regime in YBCO. While the effective mass is found to
strongly increase, suggesting an approach to a diverging behaviour close to optimal
doping, the oscillation frequency is found to increase almost linearly, see Fig. 6.5a
[23]. However this only accounts for the most dominant frequency. Improvements in
the measurements in pulsed magnetic fields in the last years have allowed the study
these materials to even higher fields, showing the existence of two more frequencies,
close to the main oscillation frequency, see Fig. 6.5b–c [23].

While in the hole doped compounds the observation of quantum oscillations close
to optimal doping is difficult due to the high upper critical field, those experiments
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(a) (b)

Fig. 6.4 a de Haas-van Alphen signal obtained for slow (YBCO) and fast (Tl2201) oscillations in
high magnetic fields. The corresponding FFT spectra are shown in (b). Taken from Ref. [21]

(a) (b) (c)

Fig. 6.5 a Evolution of the dominant oscillation frequency in YBCO with doping p. b Oscillatory
component of the magnetoresistance of YBCO p = 0.108 at T = 4.2K in pulsed magnetic field.
The FFT spectra of the oscillatory data is shown in (c). Taken from Ref. [23]

where possible in the electron doped materials. Here the critical temperature is much
lower and the upper critical field of less than 20T in the optimally doped samples
allows the study of the normal state over the entire phase diagram. There it was found
that fast and slow oscillations are observed up to optimal doping [24–26]. Using a
reconstruction based on SDW as proposed by Lin and Millis [27] this behaviour can
be explained by magnetic breakdown. While such a reconstruction scenario had also
been discussed for the hole doped systems for a long time, recently new attention was
drawn to the field with the discovery of charge order in high magnetic fields using
NMR [12] and ultrasound studies [13]. Short after it was found that even in zero field
a short range incommensurate CDW state exists that gets enhanced by lowering the
temperatures [9]. This CDW phase coincides with the region of the Fermi surface
where quantum oscillations are observed and where the Hall signal changes sign
[5]. It is therefore believed that the CDW could be the mechanism which drives the
reconstruction of the Fermi surface. This is supported by the finding of Tabis et al.
[28] in Hg1201, where the observed frequency in quantum oscillations [29] is higher
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than those in YBCO but can be linked to a different incommensurate CDW wave
vector. It is therefore believed that the low frequency quantum oscillations are a
general feature of UD cuprates that is driven by a charge density wave that competes
with superconductivity [9].

In the overdoped regime of Tl2201 quantum oscillations with a much higher
frequency of F ≈18kT where observed, see Fig. 6.4 [6], which was in agreement
with band structure calculations and ARPES measurements.

YBa2Cu4O8 (Y124) is similar to YBCO. However it is only available in the
stoichiometric form and cannot be doped by oxygen annealing. The typical transition
temperature of around Tc ≈ 80K places it close to optimally doped YBCO. Slow
quantum oscillations have been observed similar to YBCO [20, 22], but no charge
order has yet been reported. By applying hydrostatic pressure the superconducting
critical temperature in Y124 increases. This is believed to be similar to the process
of hole doping as in the case of hydrostatic pressure the c-axis lattice parameter
shrinks, which is similar to the effect found for oxygen annealing in YBCO [14].
While in YBCO the CuO-chains are not completely filled, they are in Y124 and
hence no change in oxygen-ordering is expected, which should leave us with the
pure effect of the lattice parameter changing. Our attempt is therefore to measure
quantum oscillations under hydrostatic pressure to determine how the extremal orbit
area and the effective mass depend on pressure. As seen in YBCO the mass becomes
strongly enhanced when approaching optimal doping. Therefore a similar increase
with m∗ as a function of Tc is expected.

The origin of the observed Fermi surface pockets lays in the hybridized copper-
oxygen bands. As seen in density of states [30] the main contribution to the density
of states at the Fermi level comes from the copper atoms in the plane. Significant
spectral weight close to the Fermi level is also found from the copper-atoms in
the double chains, while the oxygen atoms have a minor contribution. The yttrium
and barium bands are localized. While the copper-oxygen double chains contribute
two one-dimensional Fermi surface sheets, the Fermi surface of the planes is quasi
two-dimensional [30]. This quasi two-dimensional pocket arises from hybridization
of copper dx2−y2 -orbitals with oxygen p-orbitals and is most likely giving rise to
the observed quantum oscillations. However we need to keep in mind that these
band structure calculations are performed in the tetragonal crystal structure of the
system. As discussed we expect to find a reconstruction of the Fermi surface at low
temperatures, as seen by Hall effect measurements [15], which is most likely caused
the formation of a CDW [9].

6.2 Zero-Field Under Pressure

Measurements under pressure at zero field have been performed in a beryllium-
copper pressure cell in Bristol. As the sample is only thermalized via the contact
wires very slow sweep rates are required. For this the sample was stabilized at a set
temperature and then held there for two minutes before reading the resistance. We
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Fig. 6.6 YBa2Cu4O8, c-axis resistance versus temperature at different hydrostatic pressures. The
right panel shows an zoomed view on the superconducting transition

have chosen set points every 10mK close to the transition and every 5K between Tc
and room temperature. The transition was measured by decreasing and increasing
steps, to ensure no hysteresis effect. The resulting resistance versus temperature plots
are shown in Fig. 6.6.

While the sample becomes more metallic at room temperature the maximum in
c-axis resistance shifts to higher temperatures. The shape of the superconducting
transition however remains unchanged. A strong peak is observed just before the
superconducting transition. This peak, whose origin might be due to current inho-
mogeneity, is absent in some samples while being very pronounced in sample with
small resistance values. The superconducting transition at p = 0 is slightly lower
than previous reports but is in good agreement with Tc obtained from heat capacity
measurements on a variety of samples. The kink in the transition, marked by the
arrow in Fig. 6.6, remains constant up to a pressure of about 7kbar where the peak
above Tc disappears and a step like feature appears. We believe that this modification
is due to a change in the current path through the sample.

From this we can conclude that in case where quantum oscillations are observed
under pressure we will not be able to compare relative amplitude changes between
different pressure and also the change of magnetoresistance with pressure can have
features that might be due to inhomogeneities rather than intrinsic properties of the
system.

6.3 Mass at Zero Pressure

While the effective mass in Y124 had been reported previously we have con-
ducted experiments before using the pressure cell using magnetic fields up 70T
at the LNCMI-Toulouse. The focus on these experiments was to find good quality
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Fig. 6.7 Magnetoresistance and the derivative of a sample of YBa2Cu4O8 at T = 1.5K. The
dashed line in the right panel is a guide to the eye for a linear magnetoresistance

Fig. 6.8 Oscillatory part of the magnetoresistance of YBa2Cu4O8 at various temperature (left
panel) and the extracted oscillation amplitude versus temperature as extracted by fits of the LK
formula to the data (right panel). The solid line is a fit of the temperature dependent part the LK
formula to the data and holds an effective mass of m∗ = (2.0 ± 0.3) me

single crystals and to determine the effective mass prior to using the pressure cell.
As the sample in this setup is submerged in liquid helium we have a good knowledge
of the sample temperature. Hence we can compare to results at zero-pressure inside
the cell for consistency (Fig. 6.7).

In Fig. 6.8 (left) themagnetoresistance of Y124 at a temperature of 2.5K is shown.
When taking the first derivative of this data we obtain the data shown in Fig. 6.8
(right). The dashed line is given as guide to the eye showing that the magnetoresis-
tance does not follow a B2 dependence but is rather linear in B. By subtracting a
smooth background from the raw data we are able to obtain the oscillatory part only.
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The data is shown in Fig. 6.6. By fitting the data using the LK formula we are able
to track the amplitude dependence with temperature, resulting in the data shown in
Fig. 6.6 (right). The solid line represents a fit to the data as given by the LK formula.
This gives an effectivemassm∗ = (2.0±0.3)me lower than the previous reports [20].
This result was obtained independently on a second sample. The observed frequency
of F = (650 ± 30)T is consistent with the previous report [20].

6.4 Magnetoresistance Under Pressure

Under hydrostatic pressure the superconducting critical temperature increases. At the
same timewe observe an increase in the irreversible field, which in accordance toRef.
[31] is defined as the onset of a finite resistance. In Fig. 6.9 the magnetoresistance
is shown for one sample at different applied pressure. We find a strong variation of
the magnetoresistance at low pressure values. On first sight this in agreement with
the drop in resistance in zero-field cool. We remember that in the two-carrier model
the magnetoresistance �ρ ∝ ρ−1

0 . This means that for a lower residual resistance
ρ0 we expect a higher response of the resistance in field. This holds up to about
p = 5kbar where the magnetoresistance starts to drop again, see Fig. 6.10a. At the
same time the derivative of the magnetoresistance saturates as shown in Fig. 6.10b.
In the case of YBCO the effect of an increase in Tc is caused by doping which
changes the c-axis parameter of the system [14], such that c ∝ p−1. If we were
to assume the same scenario here, which is likely as the hydrostatic pressure could
reduce the lattice parameter, the c-axis hopping term t⊥ would increase which leads

Fig. 6.9 Magnetoresistance of YBa2Cu4O8 at T = 1.5K under hydrostatic pressure. A strong
increase in the magnetoresistance is found for low pressure values. A increase in the upper critical
field with applied pressure is found
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Fig. 6.10 a Evolution of the
magnetoresistance value at
B = 57T of YBa2Cu4O8.
After a strong increase at low
pressure of the resistance
value a slow decrease is
observed in pressure above
5kbar. The slope of the
magnetoresistance saturates
at the pressure where the
maximum resistance value is
observed (b)

(a)

(b)

to a decrease in magnetoresistance [32]. While the two effects would constructively
lower the zero-field resistance, they would counteract each other under magnetic
field.

Further it should be pointed out that the same strong increase inmagnetoresistance
was observed in a second sample which makes us believe that it is not caused by a
change in the current path in the sample. Further the Shubnikov-de Haas oscillations,
whichwill be discussed in the next section show a rather constant amplitude in�R/R
for all pressures, suggesting that we do not probe a different part of sample.

6.5 Fermi Surface Evolution Under Pressure

We now turn to the evolution of the Fermi surface. Since we start out with a stoichio-
metric material, we do not expect any sudden changes when applying pressure. Such
changes that could in principle be caused by reorganizing the partial chain filling in
YBCO should be absent here. As we mentioned before, both the expected shrinking
of the crystal lattice [14] with hydrostatic pressure, as the increase in Tc suggest that
the application of pressure has similar effects as hole-doping the system.
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Fig. 6.11 Differentialmagnetoresistance ofYBa2Cu4O8 at T = 1.5K. The arrows point at position
ofmaximumandminimumvalues in the oscillatory part of the signal. A clear phase shift is observed,
indicating a shift in oscillation frequency

Wewill first turn to the frequency of the observed Shubnikov-deHaas oscillations.
In Fig. 6.11 the differential of the magnetoresistance is shown for a temperature of
1.5K at different pressure. The data has been offset for clarity. We see that the
observed maxima and minima are shifted in field. This most likely being caused by a
change in oscillations frequency, wewill try to track the evolution of F with pressure.
For pressures of 7 and 9kbar the limited normal state field window does not allow
for a very precise determination and hence the obtained result can only be seen as
a trend. In Fig. 6.12a the obtained frequencies, from LK fits to the data, are shown.
While the results would allow for a rather constant extremal orbit size with pressure,
the strong change seen in Fig. 6.11 does not support this scenario. The date rather
suggest a small continuous increase in orbit size with pressure, which is consistent
with the assumption that the application of pressure is similar to hole doping [6, 21].
For the highest pressures of 9kbar very little change in the maximum position is seen
compared to that of 7kbar. This could be interpreted as a saturation in frequency at
this point. In the previous section we saw that the slope of the magnetoresistance
becomes roughly constant in this pressure range. For a barrel-shaped Fermi surface
like present in the cuprateswe expect for themagnetoresistance�ρ(B) ∝ kF B/t⊥m∗
[33]. In this we need to assume that the decrease in zero-field resistance is caused by
an increase in the c-axis hopping parameter t⊥ while the scattering rate τ is in first
approximation unaffected. We then conclude that for the dρ/dB being constant the
term kF B/t⊥m∗ to be constant. As t⊥ is expected to be proportional to p for constant
kF a reduction of m∗ is expected. In fact, we do observe a trend towards a lower
effective mass at high pressure, see Fig. 6.12b. Those masses were extracted from
LK fits with a smooth background to the derivative shown in Fig. 6.11 at different
temperatures between 1.5 and 4.2K. The obtained amplitudes were then used to
fit the temperature dependent part of the LK formula to deduce the effective mass.
This reduction in the effective mass seems to be in contrast to the increase in the
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Fig. 6.12 Evolution of the extracted parameter F , effective mass m∗, superconducting-normal
conducting transition of YBa2Cu4O8 in field and the critical temperature under pressure. The
dashed lines are guides to the eye

superconducting critical temperature and upper critical field. However while both
of these are connected to the effective mass, in BCS theory, the assumption of an
isotropic gap is not valid for the cuprates. The gap in this class of materials possesses
d-wave symmetry which mean the gap-function �kk ′ is a function of k. This being
caused by a k-dependent interaction potential Vkk ′ could lead to hot-spots on the
Fermi surface, points where the mass is enhanced over the average value. In the SdH
experiment we are only sensitive to an average over the entire Fermi surface sheet
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and hence while some parts might be strongly enhance, we could still find a slight
decrease or roughly constant mass as indicated in Fig. 6.12b as dashed lines.

Another possible scenario that we can not rule out at this stage, is the evolution
due to a change in harmonic content. As pointed out in the introduction the oscillation
spectrum for YBCO contains additional frequencies from other extremal orbits, that
modulate the amplitude. This likely also being the case inY124, could lead to changes
in the dominant frequency and hence the strong phase shift observed under pressure.

6.6 Conclusion

In conclusion we have performedmeasurements on the evolution of the quasi particle
mass under hydrostatic pressure. An increase in the oscillation frequency was found
that is in good agreement with that found in YBCO [21] in the case of hole-doping.
This is also in agreement with the assumption of Y124 being located at p = 0.14 in
the phase diagram of YBCO. The increase in the superconducting critical tempera-
ture, as observed previously for Y124 under pressure [34] resembles the increase in
YBCO with doping and used in this experiment to determine the applied pressure.

While for an analogy of pressure and hole doping also an increase in quasi particle
mass would be expected, using Shubnikov-de Haas measurements in high magnetic
field we found a rather constant effective mass, that tends towards a suppression at
applied pressure above 5kbar. Herewe can not rule out hot-spots on the Fermi surface
that lead to the formation of a larger gap at these k-values. However the agreement of
extremal orbit, critical temperature and c-axis resistivity evolution with that expected
from a general picture raises the questionwhy the strongmass enhancement observed
is not reproduced.

Further we have found, in measurements up to 70T at ambient pressure, a signifi-
cantly lower effective mass than reported previously. As the change in quasi particle
mass might be smaller than the observed difference between reported values and our
findings, additional measurements at zero-pressure are necessary.

At this stage we can not draw any final conclusion as further measurements at
high pressure need to be carried out to verify our results. For this the design of a new
pressure cell for use in fields up to 70T is currently under development. This will
hopefully allow us to determine the oscillation frequency and quasi particle mass
more reliably under hydrostatic pressure up 10kbar. Further the use of higher field
would possibly help to understand the harmonic content evolution that could also
have influence on the evolution of the effective mass.
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Appendix A
Numerical Phase Sensitive Detection
in Matlab

function result = Lockin(data ,tcol ,ycol ,refcol ,fcut ,phase ,time ,harmonic)

%% function result = Lockin(data ,tcol ,ycol ,refcol ,fcut ,phase ,timeconst ,harmonic)

%

% data: matrix of data

% tcol: column number of time

% ycol: column of sample voltage

% refcol: column of reference signal

% fcut: cut of frequency for low pass filter f = 1/(2* pi*t)

% time: sampling time

% harmonic: select the harmonic order

if ~exist('harmonic ')

harmonic = 1;

end

yref = data(:,refcol );

ysample = data(:,ycol );

x = data(:,tcol );

% find 1st harmonic frequency

fftdata = myfft ([x,yref],1,2,50, false );

[m,i] = max(fftdata (: ,2));

f = fftdata(i,1);

sinus = @(p,x) p(1).*sin (2* pi.*x.*f+p(2));

start = [1 0];

if length(data) > 500e3

coef = nlinfit(x(1:1000) , yref (1:1000) , sinus ,start );

else

coef = nlinfit(x(1:10000) , yref (1:10000) , sinus ,start );

end

% save reference parameter

result.ref_freq = f;

result.ref_ampl = coef (1);

result.ref_phase = coef (2)*180/ pi;

result.harmonic = harmonic;

% select harmonic

f = f * harmonic;

% create numerical reference signal

sinus = @(p,x) p(1).*sin (2* pi.*x.*f+p(2));

coef (2) = coef (2) + phase*pi /180;

coef (1) = 1;

yref_in = sinus(coef ,x);

coef (2) = coef (2) + pi/2;
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yref_out = sinus(coef ,x);

% multiplication of signal and reference

ydsp_in = ysample.*yref_in;

ydsp_out = ysample.*yref_out;

% create filter parameter for butterworth filter

pts = round (1/ fcut /(x(2)-x(1)));

fniq = 1/(x(2)-x(1))/2;

[b1,a1] = butter(4,fcut/fniq ,'low');

% perform butterwort filter forward and backward

yresult_in = filtfilt(b1 ,a1 ,ydsp_in );

yresult_out = filtfilt(b1,a1,ydsp_out );

yresult_in = yresult_in. *2;

yresult_out = yresult_out. *2;

% save results

result.X = yresult_in ;

result.Y = yresult_out;

disp('------------ LIA Reference Parameter -------------');

disp (['Frequency: ' num2str(result.ref_freq ) ' Hz']);

disp (['Amplitude: ' num2str(result.ref_ampl ) ' V']);

disp('-------------------------------------------------- ');

end
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